Answer to Question #216342 in Differential Equations for Rakesh

Question #216342
(a) Find the integral surface of the following partial differential equation: (6) x(z+2a)p+ (xz+2yz + 2ay)q=z(z + a) Also find a particular solution passing through y = 0, 23+x(z + a)
1
Expert's answer
2021-07-14T13:13:57-0400

"\\frac{dx}{x(z+2a)}=\\frac{dy}{xz+2yz+2ay}=\\frac{dz}{z(z+a)}"

"\\frac{dx}{x}=\\frac{(z+2a)dz}{z(z+a)}"

"\\int\\frac{dx}{x}=\\intop\\frac{dz}{z}+\\int\\frac{adz}{z(z+a)}"

"\\frac{1}{z(z+a)}=\\frac{A}{z}+\\frac{B}{z+a}"

"A(z+a)+Bz=a"

"A+B=0"

A=1

B=-1

"\\frac{1}{z(z+a)}=\\frac{1}{z}-\\frac{1}{z+a}"

"log(x)=log(z)-a log(z+a)+ log(c_1)=log(\\frac{c_1-z^2}{z+a})"

"c_1=\\frac{x(z+a)}{z^2}"

"\\frac{dy}{xz+2yz+2ay}=\\frac{dz}{z(z+a)}"

"\\frac{(z+a)dy}{c_1-z^3+2y(z+1)^2}=\\frac{dz}{z(z+a)}"

"\\frac{dy}{dz}-\\frac{y}{z}=\\frac{c_1-z^2}{(z+a)^2}"

"y=uv"

"y'=u'v+v'y"

"v'-v\/z=0"

v=z

"\\frac{dy}{dz}=\\frac{c_1-z^2}{(z+a)^2}"

"c_1=log(z+a)+\\frac{1}{z+a}+c_2-z"

"c_2=\\frac{y}{z}-\\frac{x(z+a)}{z^2}-log(z+a)+\\frac{1}{z+a}"

For y=0.23+x(r+a)

"c_2=\\frac{0.23+x(z+a)}{z}-\\frac{x(z+a)}{z^2}-log(z+a)+\\frac{1}{z+a}"

Substituting c1 and c2 we get the integral surface:

"\\frac{2x(z+a)}{z^2}=\\frac{2}{z+a}+\\frac{0.23+x(z+a)}{z}-z"






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog