Answer to Question #216156 in Differential Equations for Aravind

Question #216156
(D-5D
1
Expert's answer
2021-07-12T15:00:55-0400
"(D^2-5D+6)y=\\cos 3x"

The homogeneous differential equation


"(D^2-5D+6)y=0"

The characteristic equation


"r^2-5r+6=0"

"r_1=2,r_2=3"

The general solution of the homogenepus equation is


"y_h=c_1e^{2x}+c_2e^{3x}"

Find the particular solution of the nonhomogeneous differential equation


"y_p=A\\cos3x+B\\sin3x"

"y_p '=-3A\\sin 3x+3B\\cos3x"


"y_p''=-9A\\cos3x-9B\\sin3x"

Substitute


"-9A\\cos3x-9B\\sin3x+15A\\sin 3x-15B\\cos3x"

"+6A\\cos3x+6B\\sin3x=\\cos3x"

"-3A-15B=1""15A-3B=0=>B=5A"

"-78A=1=>A=-\\dfrac{1}{78},B=-\\dfrac{5}{78}"

Then


"y_p=-\\dfrac{1}{78}\\cos3x-\\dfrac{5}{78}\\sin3x"

The general solution of the given nonhomogenepus equation is


"y=c_1e^{2x}+c_2e^{3x}-\\dfrac{1}{78}\\cos3x-\\dfrac{5}{78}\\sin3x"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog