Answer to Question #216514 in Differential Equations for didii

Question #216514

solve the following homogeneous equations

  1. dy/dx=(2x-7y)/(3y-8x)
  2. (2xy+3y2)dx-(2xy+x2)dy=0
  3. xsin(y/x)(ydx+xdy)+ycos(y/x)(xdy-ydx)=0
1
Expert's answer
2021-07-19T07:45:04-0400

Solution

1."\\frac{dy}{dx}=\\frac{2x-7y}{3y-8x}"

Take

y=vx

"\\frac{dy}{dx}=v+x\\frac{dv}{dx}"

v+x"\\frac{dv}{dx}=\\frac{2x-7vx}{8vx-8x}"

Divide the R.H.S with x and seperate by variables

"\\frac{8v-8}{v-8v^2+2}dv=\\frac1xdx"

Integrate both sides respectively,we have;

"\\frac{-13ln(8v^2-v-2)+3\\sqrt{65}(ln(16v+\\sqrt{65}-1)-ln(16-\\sqrt{65}-1)}{26}=ln(x)+C"

But v="\\frac yx" ,replace in the equation;

"\\frac{-ln(8\\frac{y^2}{x^2}-\\frac yx-2)+3\\sqrt{65}(ln(16\\frac yx+\\sqrt{65}-1)-ln(16\\frac yx-\\sqrt{65}-1)}{26}=ln(x)+C"

2.

(2xy+3y2)dx-(2xy+x2)dy=0

Rewrite as follows,

"\\frac{2xy+3y^2}{2xy+x^2}=\\frac{dy}{dx}"

Take y=vx

"\\frac{dy}{dx}=v+x\\frac{dv}{dx}"

Replace

"\\frac{2vx^2+3v^2x^2}{2vx^2+x^2}=v+x\\frac{dv}{dx}"

Divide by x2 and put like terms together.

"\\frac{2v+1}{v^2+v}dv=\\frac 1xdx"

Integrate both sides;

ln(v2+v)=ln(x)+C

Replace back v="\\frac yx"

ln("\\frac{y^2}{x^2}" +"\\frac yx")=ln(x)+C

3.

Rewrite as follows;

(chain(y/X)-y2cos(y/x)dx+(x2sin(y/x)-xycos(y/x)dy=0

"\\frac{dy}{dx}" ="\\frac{y^2cos(\\frac yx)-xysin(\\frac yx)}{x^2sin(\\frac yx)+xycos(\\frac yx)}"

Take

y=vx and "\\frac {dy}{dx}=v+x\\frac {dv}{dx}"

Replace in the equation and divide x2

"v+x\\frac{dv}{dx}=\\frac{v^2cosv-vsinv}{sin v+vcosv}"

Seperate variables;

"\\frac{sinv +vcosv}{-2vsinv}dv=\\frac 1xdx"

Integrate both sides using suitable methods,we have;

"\\frac{-ln(sin v)-ln( v)}{2}=ln(x)+C"

Replace back v="\\frac yx"


"\\frac{-ln(sin(\\frac yx)-ln(\\frac yx)}{2}=ln(x )+C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog