solve the following homogeneous equations
Solution
1."\\frac{dy}{dx}=\\frac{2x-7y}{3y-8x}"
Take
y=vx
"\\frac{dy}{dx}=v+x\\frac{dv}{dx}"
v+x"\\frac{dv}{dx}=\\frac{2x-7vx}{8vx-8x}"
Divide the R.H.S with x and seperate by variables
"\\frac{8v-8}{v-8v^2+2}dv=\\frac1xdx"
Integrate both sides respectively,we have;
"\\frac{-13ln(8v^2-v-2)+3\\sqrt{65}(ln(16v+\\sqrt{65}-1)-ln(16-\\sqrt{65}-1)}{26}=ln(x)+C"
But v="\\frac yx" ,replace in the equation;
"\\frac{-ln(8\\frac{y^2}{x^2}-\\frac yx-2)+3\\sqrt{65}(ln(16\\frac yx+\\sqrt{65}-1)-ln(16\\frac yx-\\sqrt{65}-1)}{26}=ln(x)+C"
2.
(2xy+3y2)dx-(2xy+x2)dy=0
Rewrite as follows,
"\\frac{2xy+3y^2}{2xy+x^2}=\\frac{dy}{dx}"
Take y=vx
"\\frac{dy}{dx}=v+x\\frac{dv}{dx}"
Replace
"\\frac{2vx^2+3v^2x^2}{2vx^2+x^2}=v+x\\frac{dv}{dx}"
Divide by x2 and put like terms together.
"\\frac{2v+1}{v^2+v}dv=\\frac 1xdx"
Integrate both sides;
ln(v2+v)=ln(x)+C
Replace back v="\\frac yx"
ln("\\frac{y^2}{x^2}" +"\\frac yx")=ln(x)+C
3.
Rewrite as follows;
(chain(y/X)-y2cos(y/x)dx+(x2sin(y/x)-xycos(y/x)dy=0
"\\frac{dy}{dx}" ="\\frac{y^2cos(\\frac yx)-xysin(\\frac yx)}{x^2sin(\\frac yx)+xycos(\\frac yx)}"
Take
y=vx and "\\frac {dy}{dx}=v+x\\frac {dv}{dx}"
Replace in the equation and divide x2
"v+x\\frac{dv}{dx}=\\frac{v^2cosv-vsinv}{sin v+vcosv}"
Seperate variables;
"\\frac{sinv +vcosv}{-2vsinv}dv=\\frac 1xdx"
Integrate both sides using suitable methods,we have;
"\\frac{-ln(sin v)-ln( v)}{2}=ln(x)+C"
Replace back v="\\frac yx"
"\\frac{-ln(sin(\\frac yx)-ln(\\frac yx)}{2}=ln(x )+C"
Comments
Leave a comment