solve each of the following initial value problems
1.
"2-5\\dfrac{y}{x}+(4-\\dfrac{y}{x})\\dfrac{dy}{dx}=0"
Let "y=xv." Then "\\dfrac{dy}{dx}=v+x\\dfrac{dv}{dx}"
"2-5v+4v-v^2+x(4-v)\\dfrac{dv}{dx}=0"
"\\int\\dfrac{v-4}{v^2+v-2}dv=-\\int\\dfrac{dx}{x}"
"\\dfrac{v-4}{v^2+v-2}=\\dfrac{A}{v-1}+\\dfrac{B}{v+2}=\\dfrac{A(v+2)+B(v-1)}{(v-1)(v+2)}"
"v=1: 3A=-3=>A=-1"
"v=-2: -3B=-6=>B=2"
"-\\ln|v-1|+2\\ln|v+2|=-\\ln|x|+\\ln C"
"\\dfrac{x(v+2)^2}{(v-1)}=C"
"\\dfrac{(y+2x)^2}{(y-x)}=C"
"y(1)=4"
"\\dfrac{(y+2x)^2}{(y-x)}=12"
2.
"3+9\\dfrac{y}{x}+5(\\dfrac{y}{x})^2-(6+4\\dfrac{y}{x})\\dfrac{dy}{dx}=0"
Let "y=xv." Then "\\dfrac{dy}{dx}=v+x\\dfrac{dv}{dx}"
"3+9v+5v^2-6v-4v^2-x(6+4v)\\dfrac{dv}{dx}=0"
"\\int\\dfrac{6+4v}{v^2+3v+3}dv=\\int\\dfrac{dx}{x}"
"d(v^2+3v+3)=(2v+3)dv"
"\\dfrac{(y^2+3xy+3x^2)^2}{x^5}=C"
"y(1)=4"
"C=961"
"\\dfrac{(y^2+3xy+3x^2)^2}{x^5}=961"
Comments
Leave a comment