Answer to Question #216518 in Differential Equations for cimona

Question #216518

solve each of the following initial value problems

  1. (2x-5y)dx+(4x-y)dy=0 y(1)=4
  2. (3x2+9xy+5y2)dx-(6x2+4xy)dy=0 y(1)=4
1
Expert's answer
2021-07-13T08:50:41-0400

1.


"(2x-5y)dx+(4x-y)dy=0"

"2-5\\dfrac{y}{x}+(4-\\dfrac{y}{x})\\dfrac{dy}{dx}=0"

Let "y=xv." Then "\\dfrac{dy}{dx}=v+x\\dfrac{dv}{dx}"


"2-5v+(4-v)(v+x\\dfrac{dv}{dx})=0"

"2-5v+4v-v^2+x(4-v)\\dfrac{dv}{dx}=0"

"\\int\\dfrac{v-4}{v^2+v-2}dv=-\\int\\dfrac{dx}{x}"

"\\dfrac{v-4}{v^2+v-2}=\\dfrac{A}{v-1}+\\dfrac{B}{v+2}=\\dfrac{A(v+2)+B(v-1)}{(v-1)(v+2)}"


"A(v+2)+B(v-1)=v-4"

"v=1: 3A=-3=>A=-1"

"v=-2: -3B=-6=>B=2"


"-\\int\\dfrac{dv}{v-1}+2\\int\\dfrac{dv}{v+2}=-\\int\\dfrac{dx}{x}"

"-\\ln|v-1|+2\\ln|v+2|=-\\ln|x|+\\ln C"

"\\dfrac{x(v+2)^2}{(v-1)}=C"

"\\dfrac{(y+2x)^2}{(y-x)}=C"

"y(1)=4"


"C=\\dfrac{(4+2(1))^2}{(4-1)}=12"

"\\dfrac{(y+2x)^2}{(y-x)}=12"

2.


"(3x^2+9xy+5y^2)dx-(6x^2+4xy)dy=0"

"3+9\\dfrac{y}{x}+5(\\dfrac{y}{x})^2-(6+4\\dfrac{y}{x})\\dfrac{dy}{dx}=0"

Let "y=xv." Then "\\dfrac{dy}{dx}=v+x\\dfrac{dv}{dx}"


"3+9v+5v^2-(6+4v)(v+x\\dfrac{dv}{dx})=0"

"3+9v+5v^2-6v-4v^2-x(6+4v)\\dfrac{dv}{dx}=0"

"\\int\\dfrac{6+4v}{v^2+3v+3}dv=\\int\\dfrac{dx}{x}"



"d(v^2+3v+3)=(2v+3)dv"


"2\\ln(v^2+3v+3)=\\ln|x|+\\ln C"


"\\dfrac{(v^2+3v+3)^2}{x}=C"

"\\dfrac{(y^2+3xy+3x^2)^2}{x^5}=C"

"y(1)=4"


"\\dfrac{(4^2+3(1)(4)+3(1)^2)^2}{1^5}=C"

"C=961"

"\\dfrac{(y^2+3xy+3x^2)^2}{x^5}=961"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog