The population N(t) of a species of micro-organism in a laboratory setting at any time t is established to vary under the influence of a certain chemical at a rate given by dN/dt=t-2et show that N(t)=t-2et+c.hence if N(0)=400 determine the population when t=5
Given -
"\\dfrac{dN}{dt}=" "t-2e^{t}"
Then , "dN=(t-2e^{t})dt"
integrate both sides we get ,
"\\int dN=\\int(t-2e^{t})dt"
"N(t)=\\dfrac{t^{2}}{2}-2e^{t}+c"
given -
"N(0)=400"
"=400=\\dfrac{0^{2}}{2}-2e^{0}+c" "\\implies" "c=402"
"N(t)=" "\\dfrac{t^{2}}{2}-2e^{t}+402"
now putting t=5 we get ,
"N(5)=""\\dfrac{5^{2}}{2}-2e^{5}+402=118"
Comments
Leave a comment