a) (6xy+2y2−5)dx+(3x2+4xy−6)dy=0 , y(1)=2
M(x,y)=6xy+2y2−5⟹∂y∂M(x,y)=My=6x+4y
N(x,y)=3x2+4xy−6⟹∂x∂N(x,y)=Nx=6x+4y
Hence exact since My=Nx
There exist a function μ(x,y) such that
∂x∂μ(x,y)=M(x,y)=6xy+2y2−5
∂y∂μ(x,y)=N(x,y)=3x2+4xy−6
let μ(x,y)=∫xM(x,y)dx +g(y)
=∫x(6xy+2y2−5)dx +g(y)
=3x2y+2xy2−5x +g(y)
⟹∂y∂μ(x,y)=3x2+4xy+∂y∂g(y)
⟹3x2+4xy+∂y∂g(y)=3x2+4xy−6
⟹∂y∂g(y)=−6
⟹∫dg(y)=−6∫dy
⟹g(y)=−6y
⟹μ(x,y)=3x2y+2xy2−5x−6y
∴ The general solution is thus 3x2y+2xy2−5x−6y=c
We can find the value of Cc using the initial condition y(1)=2
⟹3(1)2(2)+2(1)(2)2−5(1)−6(2)=c⟹c=−3
∴ the particular solution is
3x2y+2xy2−5x−6y=−3
Rearranging the equation gives
3x2y+2xy2−5x+3=6y
dividing through by 6 gives
y=21x2y+31xy2−65x+21
b) x2dx2d2y+xdxdy+4y=2xlnx
This is a Cauchy's linear differential equation
let x=ez⟹z=lnx
let xdxdy=Dy , D=dzd
let x2dx2d2y=D(D−1)y
therefore the given equation becomes
=D(D−1)y+Dy+4y=2zez
=(D2−D+D+4)y=2zez
=(D2+4)y=2zez
Next we need to find C.F as follows
D2+4=0⟹ D=2i and D=−2i where i is an imaginary number
⟹C.F=C1e−2iz+C2e2iz=C1sin2z+C2cos2z
but z=log x
∴ C.F=C1sin2logx+C2cos2logx
Next we need to find P.I as follows
P.I=(D2+4)12zez=2ez[(D+1)2+41×z]=2ez[D2+2D+51]×z
=52ez[1+5D2+2D1]z
=52ez[1+5D2+2D]−1z
=52ez[1−5D2+2D+...]z
=52ez[z−502+2]
=52ez[z−52]
=52zez−254ez
but x=ez and z=lnx
⟹P.I=52xlogx−254logx
∴ The general solution is given as
y=CF+PI
y=C1sin2logx+C2cos2logx+52xlogx−254logx
Comments