Question #212945
  1. solve each of the following

a) (6xy+2y2-5)dx +(3x2+4xy-6)dy=0 y(1)=2

b)x2d2y/dx2+xdy/dx+4y=2xlnx



1
Expert's answer
2021-07-05T16:54:07-0400

a) (6xy+2y25)dx+(3x2+4xy6)dy=0(6xy+2y^2-5)dx +(3x^2+4xy-6) dy=0 , y(1)=2y(1)=2


M(x,y)=6xy+2y25    M(x,y)y=My=6x+4yM(x,y)=6xy+2y^2-5 \implies {\partial M(x,y)\over \partial y}=M_y=6x+4y


N(x,y)=3x2+4xy6    N(x,y)x=Nx=6x+4yN(x,y)=3x^2+4xy-6 \implies {\partial N(x,y)\over \partial x}=N_x=6x+4y


Hence exact since My=NxM_y=N_x


There exist a function μ(x,y)\mu(x,y) such that

μ(x,y)x=M(x,y)=6xy+2y25{\partial \mu(x,y) \over \partial x}=M(x,y)=6xy+2y^2-5


μ(x,y)y=N(x,y)=3x2+4xy6{\partial \mu(x,y) \over \partial y}=N(x,y)=3x^2+4xy-6


let μ(x,y)=xM(x,y)dx\mu(x,y)=\int^xM(x,y)dx +g(y)+g(y)


=x(6xy+2y25)dx=\int^x(6xy+2y^2-5)dx +g(y)+g(y)


=3x2y+2xy25x=3x^2y+2xy^2-5x +g(y)+g(y)


    μ(x,y)y=3x2+4xy+g(y)y\implies {\partial \mu (x,y) \over \partial y}=3x^2+4xy+{ \partial g(y)\over \partial y}


    3x2+4xy+g(y)y=3x2+4xy6\implies 3x^2+4xy+{ \partial g(y)\over \partial y}=3x^2+4xy-6


    g(y)y=6\implies { \partial g(y)\over \partial y}=-6


    dg(y)=6dy\implies \int dg(y)=-6 \int dy


    g(y)=6y\implies g(y)=-6y


    μ(x,y)=3x2y+2xy25x6y\implies \mu(x,y)=3x^2y+2xy^2-5x-6y


\therefore The general solution is thus 3x2y+2xy25x6y=c3x^2y+2xy^2-5x-6y=c

We can find the value of Cc using the initial condition y(1)=2y(1)=2

    3(1)2(2)+2(1)(2)25(1)6(2)=c    c=3\implies3(1)^2(2)+2(1)(2)^2-5(1)-6(2)=c \implies c=-3

\therefore the particular solution is

3x2y+2xy25x6y=33x^2y+2xy^2-5x-6y=-3

Rearranging the equation gives

3x2y+2xy25x+3=6y3x^2y+2xy^2-5x+3=6y

dividing through by 6 gives

y=12x2y+13xy256x+12y={1\over 2}x^2y+{1\over 3}xy^2-{5\over 6}x+{1\over 2}

b) x2d2ydx2+xdydx+4y=2xlnxx^2{ d^2y\over dx^2}+x{dy\over dx}+4y=2xlnx

This is a Cauchy's linear differential equation

let x=ez    z=lnxx=e^z \implies z=lnx

let xdydx=Dyx{dy\over dx}=Dy , D=ddzD={d\over dz}

let x2d2ydx2=D(D1)yx^2{ d^2y\over dx^2}=D(D-1)y

therefore the given equation becomes

=D(D1)y+Dy+4y=2zez=D(D-1)y+Dy+4y=2ze^z

=(D2D+D+4)y=2zez=(D^2-D+D+4)y=2ze^z

=(D2+4)y=2zez=(D^2+4)y=2ze^z

Next we need to find C.F as follows

D2+4=0    D^2+4=0\implies D=2iD=2i and D=2iD=-2i where ii is an imaginary number

    C.F=C1e2iz+C2e2iz=C1sin2z+C2cos2z\implies C.F=C_1e^{-2iz}+C_2e^{2iz}=C_1sin2z+C_2cos2z

but z=logz=log xx

\therefore C.F=C1sin2logx+C2cos2logxC.F=C_1sin 2logx+C_2cos2logx

Next we need to find P.IP.I as follows


P.I=1(D2+4)2zez=2ez[1(D+1)2+4×z]=2ez[1D2+2D+5]×zP.I={1\over (D^2+4)}2ze^z=2e^z[{1\over (D+1)^2+4}\times z]=2e^z[{1\over D^2+2D+5}]\times z

=2ez5[11+D2+2D5]z={2e^z\over 5}[{1\over 1+{D^2+2D\over 5}}]z

=2ez5[1+D2+2D5]1z={2e^z\over 5}[1+{D^2+2D\over 5}]^{-1}z

=2ez5[1D2+2D5+...]z={2e^z\over 5}[1-{D^2+2D\over 5}+...]z

=2ez5[z02+25]={2e^z\over 5}[z-{0^2+2\over 5}]

=2ez5[z25]={2e^z\over 5}[z-{2\over 5}]

=2zez54ez25={2ze^z\over 5}-{4e^z\over 25}

but x=ezx=e^z and z=lnxz=lnx

    P.I=2xlogx54logx25\implies P.I={2xlogx\over 5}-{4logx\over 25}

\therefore The general solution is given as


y=CF+PIy=CF+PI

y=C1sin2logx+C2cos2logx+2xlogx54logx25y=C_1sin 2logx+C_2cos2logx+{2xlogx\over 5}-{4logx\over 25}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS