solve 2xydy+(3x^2+4xy)dx=0
Solution
New function: z=y/x, y=z*x => "\\frac{dy}{dx}=x\\frac{dz}{dx}+z"
From DE: "x\\frac{dz}{dx}+z=-\\frac{3+4z}{2z}" => "x\\frac{dz}{dx}=-\\frac{3+4z+{2z}^2}{2z}"
It is a separable differential equation
"\\frac{2zdz}{3+4z+{2z}^2}=-\\frac{dx}{x}"
"\\int\\frac{2zdz}{3+4z+{2z}^2}=-\\int\\frac{dx}{x}"
Left side integral is
"\\int\\frac{2zdz}{3+4z+2z^2}=\\frac{1}{2}\\int\\frac{\\left(4z+4\\right)dz}{3+4z+2z^2}-2\\int\\frac{dz}{3+4z+2z^2}=\\frac{1}{2}\\int\\frac{d\\left(3+4z+2z^2\\right)}{3+4z+2z^2}-2\\int\\frac{dz}{3+4z+2z^2}"
Therefore
"\\frac{1}{2}ln\\left|3+4z+2z^2\\right|-2\\int\\frac{dz}{3+4z+2z^2}=-ln\\left|x\\right|+C"
Integral in this expression is
"2\\int\\frac{dz}{3+4z+2z^2}=2\\int{\\frac{dz}{1+\\left(2+4z+2z^2\\right)}=}2\\int{\\frac{dz}{1+2\\left(z+1\\right)^2}=}"
"\\frac{2}{\\sqrt2}\\int{\\frac{d\\left[\\sqrt2\\left(z+1\\right)\\right]}{1+\\left[\\sqrt2\\left(z+1\\right)\\right]^2}=\\frac{2}{\\sqrt2}arctan\\left(\\sqrt2\\left(z+1\\right)\\right)=\\frac{2}{\\sqrt2}arctan\\left(\\frac{2z+2}{\\sqrt2}\\right)}"
So
"\\frac{1}{2}ln\\left|3+4z+2z^2\\right|-\\frac{2}{\\sqrt2}arctan\\left(\\frac{2z+2}{\\sqrt2}\\right)=-ln\\left|x\\right|+C"
Returning to function y(x):
"\\frac{1}{2}ln\\left|3+4\\frac{y}{x}+2\\left(\\frac{y}{x}\\right)^2\\right|-\\frac{2}{\\sqrt2}arctan\\left(\\frac{2y+2x}{x\\sqrt2}\\right)=-ln\\left|x\\right|+C"
"\\frac{1}{2}ln\\left|3x^2+4xy+2y^2\\right|-\\frac{2}{\\sqrt2}arctan\\left(\\frac{2y+2x}{x\\sqrt2}\\right)=C"
Answer
"\\frac{1}{2}ln\\left|3x^2+4xy+2y^2\\right|-\\frac{2}{\\sqrt2}arctan\\left(\\frac{2y+2x}{x\\sqrt2}\\right)=C"
Comments
Leave a comment