Question #211910

x^2d^2y/dx^2-xdy/dx+y=log x+sin(log x)+1/x


1
Expert's answer
2021-06-30T09:52:57-0400
x2yxy+y=lnx+sin(lnx)+1xx^2y''-xy'+y=\ln x+\sin(\ln x)+\dfrac{1}{x}

Let x=et.x=e^t. Then


y=etyt,y=e2tyt+e2tyt2y'=e^{-t}y'_t, y''=-e^{-2t}y'_t+e^{-2t}y''_{t^2}

lnx=t\ln x=t

e2t(e2tyt+e2tyt2)etetyt+y=t+sint+ete^{2t}(-e^{-2t}y'_t+e^{-2t}y''_{t^2})-e^te^{-t}y'_t+y=t+\sin t+e^{-t}

yt22yt+y=t+sint+ety''_{t^2}-2y_t'+y=t+\sin t+e^{-t}

Write the related homogeneous or complementary equation:


yt22yt+y=0y''_{t^2}-2y_t'+y=0


The general solution of a nonhomogeneous equation is the sum of the general solution yh(x)y_h(x) of the related homogeneous equation and a particular solution yp(x)y_p(x) of the nonhomogeneous equation:


y(x)=yh(x)+yp(x)y(x)=y_h(x)+y_p(x)

Consider a homogeneous equation 


yt22yt+y=0y''_{t^2}-2y_t'+y=0

Write the characteristic (auxiliary) equation:


r22r+1=0r^2-2r+1=0

(r1)2=0(r-1)^2=0

r1=1,r2=1r_1=1, r_2=1

The general solution of the homogeneous equation is


yh(t)=C1et+C2tety_h(t)=C_1e^t+C_2te^t


Let

yp=At+B+Csint+Dcost+Eety_p=At+B+C\sin t+D\cos t+Ee^{-t}

Then


yp=A+CcostDsintEety_p'=A+C\cos t-D\sin t-Ee^{-t}

yp=CsintDcost+Eety_p''=-C\sin t-D\cos t+Ee^{-t}

Substitute


CsintDcost+Eet-C\sin t-D\cos t+Ee^{-t}

2A+2Ccost+2Dsint+2Eet-2A+2C\cos t+2D\sin t+2Ee^{-t}

+At+B+Csint+Dcost+Eet+At+B+C\sin t+D\cos t+Ee^{-t}


=t+sint+et=t+\sin t+e^{-t}

A=1,B=2A=1, B=2




C=0,D=12,E=14C=0, D=\dfrac{1}{2}, E=\dfrac{1}{4}

The general solution of a second order homogeneous differential equation be


y(t)=C1et+C2tet+t+2+12cost+14ety(t)=C_1e^t+C_2te^t+t+2+\dfrac{1}{2}\cos t+\dfrac{1}{4}e^{-t}




y(x)=C1x+C2xlnx+lnx+2+12cos(lnx)+14xy(x)=C_1x+C_2x\ln x+\ln x+2+\dfrac{1}{2}\cos (\ln x)+\dfrac{1}{4x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS