x2y′′−xy′+y=lnx+sin(lnx)+x1 Let x=et. Then
y′=e−tyt′,y′′=−e−2tyt′+e−2tyt2′′
lnx=t
e2t(−e−2tyt′+e−2tyt2′′)−ete−tyt′+y=t+sint+e−t
yt2′′−2yt′+y=t+sint+e−t Write the related homogeneous or complementary equation:
yt2′′−2yt′+y=0
The general solution of a nonhomogeneous equation is the sum of the general solution yh(x) of the related homogeneous equation and a particular solution yp(x) of the nonhomogeneous equation:
y(x)=yh(x)+yp(x) Consider a homogeneous equation
yt2′′−2yt′+y=0 Write the characteristic (auxiliary) equation:
r2−2r+1=0
(r−1)2=0
r1=1,r2=1 The general solution of the homogeneous equation is
yh(t)=C1et+C2tet
Let
yp=At+B+Csint+Dcost+Ee−t Then
yp′=A+Ccost−Dsint−Ee−t
yp′′=−Csint−Dcost+Ee−t Substitute
−Csint−Dcost+Ee−t
−2A+2Ccost+2Dsint+2Ee−t
+At+B+Csint+Dcost+Ee−t
=t+sint+e−t
A=1,B=2
C=0,D=21,E=41
The general solution of a second order homogeneous differential equation be
y(t)=C1et+C2tet+t+2+21cost+41e−t
y(x)=C1x+C2xlnx+lnx+2+21cos(lnx)+4x1
Comments