find a series solution in powers of x of the equation
2x2d2y/dx2+xdy/dx+(x2-1)y=0
Solution
Let
"y\\left(x\\right)=\\sum_{n=0}^{\\infty}{a_nx^n}"
"\\frac{dy}{dx}=\\sum_{n=0}^{\\infty}{\\left(n+1\\right)a_{n+1}x^n}"
"\\frac{d^2y}{dx^2}=\\sum_{n=0}^{\\infty}{\\left(n+1\\right)\\left(n+2\\right)a_{n+2}x^n}"
Substitution into equation:
"2\\sum_{n=0}^{\\infty}{\\left(n+1\\right)\\left(n+2\\right)a_{n+2}x^{n+2}}+\\sum_{n=0}^{\\infty}{\\left(n+1\\right)a_{n+1}x^{n+1}}+\\sum_{n=0}^{\\infty}{a_nx^{n+2}}-\\sum_{n=0}^{\\infty}{a_nx^n}=0"
"a_1x-a_0-a_1x+2\\sum_{n=2}^{\\infty}{n\\left(n-1\\right)a_nx^n}+\\sum_{n=2}^{\\infty}{na_nx^n}+\\sum_{n=2}^{\\infty}{a_{n-2}x^n}-\\sum_{n=2}^{\\infty}{a_nx^n}=0"
Coefficient near xn are equal to zero.
n=0: a0=0
n=1: 0=0 for any a1
n>1: 2n(n-1)an+nan+an-2-an=0 => (2n2-n-1)an+ an-2 = 0 =>
an =-an-2/ (2n2-n-1)= -an-2/ (2n2-n-1) = -an-2/ [(2n+1)(n-1)]
So a2k=0 for any k≥0
and finally a2k+1 = -a2k-1/ [(4k+3)2k] for k>0
Solution is
"y(x)=\\sum_{k=1}^{\\infty}{a_{2k-1}x^{2k-1}}"
Comments
Leave a comment