Answer to Question #212951 in Differential Equations for satek

Question #212951

find the general solutions for each of the following

  1. (3x2+9xy+5y2)dx-(6x2+4xy)dy =0 y(2)=-6
  2. x2dy/dx +xy=y3/x
1
Expert's answer
2021-07-06T15:42:27-0400

(1) Given equation is

"(3x^2+9xy+5y^2)dx-(6x^2+4xy)dy =0"


"(3x^2+9xy+5y^2)dx=(6x^2+4xy)dy"


"\\frac{dy}{dx}=\\frac{(3x^2+9xy+5y^2)}{(6x^2+4xy)}"


Putting y=vx, then "\\frac{dy}{dx}=v+x\\frac{dv}{dx}"


Then equation will be,

"v+x\\frac{dv}{dx}=\\frac{(3x^2+9vx^2+5v^2x^2)}{(6x^2+4vx^2)}"


"v+x\\frac{dv}{dx}=\\frac{(3+9v+5v^2)}{(6+4v)}"


"x\\frac{dv}{dx}=\\frac{(3+9v+5v^2)}{(6+4v)}-v"


"x\\frac{dv}{dx}=\\frac{(3+3v+v^2)}{(6+4v)}"


"\\frac{(6+4v)dv}{(3+3v+v^2)}=\\frac{dx}{x}"


Integrating both sides,


Integrating left hand side first,

"\\int \\frac{(6+4v)dv}{(3+3v+v^2)}"


Let "v^2+3v+3 = t"

"(2v+3)dv = dt"

Then integral will be,


"\\int \\frac{(6+4v)dv}{(3+3v+v^2)} = \\int \\frac{2 dt}{t} = 2ln|t| = 2ln|3+3v+v^2|"



Then, "2ln|3+3v+v^2| = ln|x| + ln|C|"


"(3+3v+v^2)^2 = Cx"

Putting v=y/x,


"(3+3(\\frac{y}{x})+(\\frac{y}{x})^2)^2 = Cx"


"(3x^2+3xy+y^2)^2 = Cx^5" is the solution of the equation.






(2) Given equation is, "x^2\\frac{dy}{dx} +xy=\\frac{y^3}{x}"


Then, "\\frac{dy}{dx} +\\frac{y}{x}=\\frac{y^3}{x^3}"


Putting y=vx, we will get,


"v+x\\frac{dy}{dx}+v = v^3"


"x\\frac{dv}{dx} = v^3-2v"


"\\frac{dv}{ v^3-2v} =\\frac{dx}{x}"


Integrating both sides,

Integrating left-hand side first, "\\int\\frac{dv}{ v^3-2v}"


"\\int\\frac{dv}{ v^3-2v} = \\int\\frac{dv}{ v(v^2-2)}"

Doing partial fraction,

"\\frac{1}{ v(v^2-2)} = \\frac{A}{v}+\\frac{Bv+C}{v^2-2}"

Solving For A, B and C, we get

"\\frac{1}{ v(v^2-2)} = \\frac{A(v^2-2)+Bv^2+Cv}{v(v^2-2)} = \\frac{(A+B)v^2+Cv-2A}{v(v^2-2)}"


Comparing powers on both sides, we get

A+B=0, C=0 and -2A=1

"\\implies A = -\\frac{1}{2} , B = \\frac{1}{2} , C=0"

Then,

"\\frac{1}{ v(v^2-2)} = \\frac{-1}{2v}+\\frac{v}{2(v^2-2)}"

Now integrating it,


"\\int\\frac{1}{ v(v^2-2)} dv=\\int \\frac{-1}{2v}+\\frac{v}{2(v^2-2)} dv"


"\\int \\frac{v}{2(v^2-2)} dv =\\int \\frac{2v}{4(v^2-2)} dv"

Taking "v^2-2 =t \\implies 2vdv = dt"


"\\int \\frac{2v}{4(v^2-2)} dv = \\int \\frac{dt}{4t} = \\frac{1}{4}ln|t|= \\frac{1}{4}ln|v^2-2|"


So, integral of LHS will be,

"\\int\\frac{1}{ v(v^2-2)} dv=\\int \\frac{-1}{2v}+\\frac{v}{2(v^2-2)} dv = -\\frac{1}{2}ln|v|+\\frac{1}{4}ln|v^2-2|"


So, we get,


"-\\frac{1}{2}ln|v|+\\frac{1}{4}ln|v^2-2| = ln|x|+ln|C|"


"-\\frac{2}{4}ln|v|+\\frac{1}{4}ln|v^2-2| = ln|x|+ln|C|"


"\\frac{1}{4}ln|\\frac{v^2-2}{v^2}| = ln|x| + ln|C|"


"\\frac{v^2-2}{v^2} = Kx^4" where K is also some constant.


putting "v = \\frac{y}{x}"


"\\frac{y^2-2x^2}{y^2} = Kx^4" which is the required solution.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog