Answer to Question #119556 in Algorithms for desmond

Question #119556
7.Compute 110101.01102-10110.10102 in octal number system.
8.Compute the value of E7BAD16-E5ACF16 in 15’s complement and write your final answer in binary.
9.Compute the value of 5510-4510 using 7-bit 2’s complement sign magnitude number
1
Expert's answer
2020-06-10T05:18:24-0400

Compute 110101.01102-10110.10102 in octal number system

 

Conversion  110101.01102 in Octal:

Divide the source code of the integer part of the number into groups of 3 digits:

1101012 = 110 1012

Then replace each group with binary code:

110 1012  = 658

 

Conversion the fractional part of the number. To do this, divide the source code into groups of 3 digits:

01102 = 011 0002 = 508

Result: 110101.01102 = 65. 508

 

Conversion  10110.10102 in Octal:

Divide the source code of the integer part of the number into groups of 3 digits:

101102 = 010 1102

Then replace each group with binary code:

010 1102 = 268

 

Conversion the fractional part of the number. To do this, divide the source code into groups of 3 digits:

10102 = 101 0002 = 508

Result: 10110.10102 = 26. 508

 

  65. 508

- 26. 50

  36.608

Answer: 36.608

 

 

 

Compute the value of E7BAD16-E5ACF16 in 15’s complement and write your final answer in binary.

 

Compute in Hex:

 E7BAD16

-E5ACF16

  20DE16

 

Compute using 15's complement.

1)     15's complement of a number is obtained by subtracting all bits from FFFFF16:

15's complement of E5ACF16 is:

FFFFFF16 – E5ACF16 =  1A53016

  FFFFFF16

– E5ACF16

  1A53016

 

2)     Now Add this 15's complement

    E7BAD16 

+  1A53016

  1020DD16

---------------------

1020DD16     

    + 1 (cary)

= 20DE16

 

Answer: 20DE16

 

 

 

Compute the value of 5510-4510 using 7-bit 2’s complement sign magnitude number.

 

Compute  in Dec:

5510 - 4510 = 1010

 

Compute  in Bin:

 1101112 

- 1011012

=    10102

 

Compute using 7-bit 2’s complement sign magnitude number:

2's complement of -45 is: 1 0100112 (Invert 0 and 1 of a given binary number. Then add 1.)

 

Add this 2's complement of  4510 to 5510

0 1101112               (5510)

+

1 0100112              (2’s complement 4510)

---------------------------------------------

 00010102

end-around-carry-bit addition does not occur in 2's complement arithmetic operations. It is ignored.

 

Answer: 00010102

 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS