We are given that "A =\\begin{bmatrix}\n 1 & 3 & 0 \\\\\n 0 & 0.5 & 1 \\\\\n 0.5 & 0 & 1\n\\end{bmatrix}", "b = \\begin{bmatrix}\n 4 \\\\\n 1 \\\\\n 4\n\\end{bmatrix}"
(a) Using the matrix inversion
"A^{-1} =\\frac{1}{det(A)}A^{-1}=\\frac{1}{1*0.5*1 + 3*0.5*0.5} \\begin{bmatrix}\n 0.5 & 0.5 & -0.25 \\\\\n -3 & 1 & 1.5 \\\\\n 3 & -1 & 0.5\n\\end{bmatrix}^{T} = \\begin{bmatrix}\n 0.25 & -1.5 & 1.5 \\\\\n 0.25 & 0.5 & -0.5 \\\\\n -0.125 & 0.75 & 0.25\n\\end{bmatrix}"
"\\begin{bmatrix}\n x \\\\\n y \\\\\n z\n\\end{bmatrix} = A^{-1} b = \\begin{bmatrix}\n 5.5 \\\\\n -0.5 \\\\\n 1.25\n\\end{bmatrix}"
(b) Using the Cramer's rule
"det(A_1)=det\\begin{bmatrix}\n 4 & 3 & 0 \\\\\n 1 & 0.5 & 1 \\\\\n 4 & 0 & 1\n\\end{bmatrix} = 4 * 0.5 * 1 + 3 * 1 * (-1 + 4) = 11"
"det(A_2)=det\\begin{bmatrix}\n 1 & 4 & 0 \\\\\n 0 & 1 & 1 \\\\\n 0.5 & 4 & 1\n\\end{bmatrix} = 1 * (1 * 1 - 1 * 4) + 4 * 1 * 0.5 = -1"
"det(A_3)=det\\begin{bmatrix}\n 1 & 3 & 4 \\\\\n 0 & 0.5 & 1 \\\\\n 0.5 & 0 & 4\n\\end{bmatrix} = 1 * 0.5 * 4 + 3 * 1 * 0.5 - 4 * 0.5 * 0.5 = 2.5"
"\\begin{bmatrix}\n x \\\\\n y \\\\\n z\n\\end{bmatrix} = \\begin{bmatrix}\n det(A_1)\/det(A) \\\\\n det(A_2)\/det(A) \\\\\n det(A_3)\/det(A)\n\\end{bmatrix} = \\begin{bmatrix}\n 5.5 \\\\\n -0.5 \\\\\n 1.25\n\\end{bmatrix}"
Comments
Leave a comment