Answer to Question #119451 in Algorithms for desmond

Question #119451
7.Compute 110101.01102-10110.10102 in octal number system.
8.Compute the value of E7BAD16-E5ACF16 in 15’s complement and write your final answer in binary.
9.Compute the value of 5510-4510 using 7-bit 2’s complement sign magnitude number
1
Expert's answer
2020-06-11T07:40:08-0400

Compute 110101.01102-10110.10102 in octal number system

110101.01102 in Octal:

integer part:             1101012 = 110 1012 = 658

fractional part:          01102 = 011 0002 = 508

Result: 110101.01102 = 65. 508

 

10110.10102 in Octal:

integer part:             101102 = 010 1102 = 268

fractional part            10102 = 101 0002 = 508

Result: 10110.10102 = 26. 508

 

Compute in octal number system:

  65. 508

- 26. 50

= 36.608

 

Result: 36.608

 

 

Compute the value of E7BAD16-E5ACF16 in 15’s complement and write your final answer in binary.

15's complement of E5ACF16:

  FFFFFF16

– E5ACF16

= 1A53016

 

 Add this 15's complement to E7BAD16:

    E7BAD16 

+  1A53016

= 1020DD16

 

1020DD16

    +   1(cary)

= 20DE16

 

Result: 20DE16

 

 

Compute the value of 5510-4510 using 7-bit 2’s complement sign magnitude number.

2's complement of -4510 is:

 1 0100112 (Invert 0 and 1 of a given binary number. Then add 1.)

 

Add 2's complement of  4510 to 5510

0 1101112               (5510)

+

1 0100112              (2’s complement 4510)

=00010102

end-around-carry-bit addition does not occur in 2's complement arithmetic operations. It is ignored.

 

Answer: 00010102

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS