Question #196612

Show that

π‘‘βŸ¨π‘βŸ©

𝑑𝑑

= βŸ¨βˆ’

πœ•π‘‰

πœ•π‘₯⟩

i.e. expectation values follow Newton’s law.


1
Expert's answer
2021-05-21T17:05:59-0400
  • As indicated, let us calculate ddt∫∣ψ(x,t)∣2dx\frac{d}{dt}\int |\psi(x,t)|^2 dx, using that we can differentiate under the integral sign :

ddt∫∣ψ(x,t)∣2dx=∫(βˆ‚βˆ‚t∣ψ(x,t)∣2)dx\frac{d}{dt}\int |\psi(x,t)|^2dx = \int(\frac{\partial}{\partial t}|\psi(x,t)|^2)dx

Now we use that βˆ£Οˆβˆ£2=ΟˆΟˆΛ‰|\psi|^2=\psi \bar{\psi} :

βˆ«βˆ‚βˆ‚t(ΟˆΟˆΛ‰)dx=∫((βˆ‚βˆ‚tψ)ΟˆΛ‰+(βˆ‚βˆ‚tΟˆΛ‰)ψ)dx\int \frac{\partial}{\partial t}(\psi\bar{\psi})dx =\int ((\frac{\partial}{\partial t}\psi)\bar{\psi}+(\frac{\partial}{\partial t}\bar{\psi})\psi)dx

Now we will use the fact that Οˆ\psi satisfies the Schrodinger equation

H^ψ=iβ„βˆ‚tψ\hat{H}\psi = i\hbar\partial_t \psi

And as hamoltonian is a real operator

H^Λ‰=H^\bar{\hat{H}}=\hat{H} and thus

H^ΟˆΛ‰=βˆ’iβ„βˆ‚tΟˆΛ‰\hat H \bar{\psi}=-i\hbar \partial_t \bar{\psi}

Using these expressions gives us

∫((βˆ’iℏH^ψ)ΟˆΛ‰+(iℏH^ΟˆΛ‰)ψ)dx\int \left((\frac{-i}{\hbar}\hat H\psi)\bar{\psi}+(\frac{i}{\hbar}\hat H \bar\psi)\psi\right)dx

But we know that as H^\hat H is a hermitian operator, we have βˆ«ΟˆΛ‰H^ψdx=∫ψH^ΟˆΛ‰dx\int \bar \psi \hat H \psi dx = \int\psi\hat H \bar \psi dx and thus the integral is zero, ddt∫∣ψ(x,t)∣2dx=0\frac{d}{dt}\int |\psi(x,t)|^2dx=0∫∣ψ(x,t)∣2dx=∣∣ψ∣∣2=const\int |\psi(x,t)|^2dx=||\psi||^2=const and as initially it is 1, it is always normalized.

  • First let's write the expression for the expectation value of pp

<p>=βˆ«ΟˆΛ‰(βˆ’iβ„βˆ‚βˆ‚x)ψdx<p>=\int \bar\psi (-i\hbar\frac{\partial}{\partial x})\psi dx

Deriving with respect to time gives us

βˆ’iℏ(∫(βˆ‚tΟˆΛ‰)(βˆ‚xψ)dx+∫(ΟˆΛ‰)(βˆ‚tβˆ‚xψ)dx)-i\hbar \left( \int(\partial_t\bar \psi)(\partial_x\psi)dx+\int(\bar\psi) (\partial_t\partial_x\psi) dx \right)

As previously, we will use the Schrodinger equation to replace βˆ‚Οˆ\partial \psi :

βˆ’iℏ(∫iℏ(H^ΟˆΛ‰)(βˆ‚xψ)dx+∫(ΟˆΛ‰)βˆ’iℏ(βˆ‚xH^ψ))-i\hbar\left( \int\frac{i}{\hbar}(\hat H \bar{\psi})(\partial_x\psi)dx+\int(\bar\psi) \frac{-i}{\hbar}(\partial_x\hat H \psi) \right)

Now, using that hamiltonian is a hermitian operator we can write it as

βˆ«ΟˆΛ‰(H^βˆ‚xΟˆβˆ’βˆ‚xH^ψ)dx\int \bar \psi (\hat H \partial_x\psi - \partial_x \hat H \psi)dx

Now using that H^=βˆ’β„22mβˆ‚xx+V\hat H = -\frac{\hbar^2}{2m}\partial_{xx}+V we find

βˆ«ΟˆΛ‰(βˆ’β„22mβˆ‚xxxψ+Vβˆ‚xψ+ℏ22mβˆ‚xxxΟˆβˆ’(βˆ‚xV)Οˆβˆ’Vβˆ‚xψ)dx\int \bar\psi (-\frac{\hbar^2}{2m}\partial_{xxx}\psi +V\partial_x \psi +\frac{\hbar^2}{2m}\partial_{xxx}\psi-(\partial_xV)\psi -V\partial_x\psi)dx

βˆ«ΟˆΛ‰(βˆ’βˆ‚xV)ψdx=<βˆ’βˆ‚βˆ‚xV>\int \bar\psi (-\partial_xV)\psi dx=<-\frac{\partial}{\partial x}V>

ddt<p>=<βˆ’βˆ‚Vβˆ‚x>\frac{d}{dt}<p>=<-\frac{\partial V}{\partial x}>

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

asirvad jaif
23.05.21, 08:21

excellent job

LATEST TUTORIALS
APPROVED BY CLIENTS