For an electron in the l = 2 state:
(a) enumerate all the possible values of quantum numbers j and mj ;
(b) draw the corresponding vector diagrams;
(c) estimate the maximum value of the spin-orbit coupling energy E.
"l=2\\\\\\therefore n=3"
(a) "s=1\/2"
"j=(n+s),(n-s)"
"j=(5\/2),(3\/2)"
For j = 5/2
"jm=j(j+1)\\hbar^2"
"jm=\\dfrac{35}{4}\\hbar^2"
For j = 3/2
"jm=\\dfrac{15}{4}\\hbar^2"
(c) "\\Delta E_{so}=\\alpha\\dfrac{Z\\hbar^3}{4m^2c}\\dfrac{1}{r^3}[j(j+1)-l(l+1)-s(s+1)]"
"s=1\/2,\\space l=2,\\space j=5\/2"
"\\Delta E_{so}=\\alpha\\dfrac{Z\\hbar^3}{4m^2c}\\dfrac{1}{r^3}\\bigg[\\dfrac{5}{2}\\bigg(\\dfrac{5}{2}+1\\bigg)-2(2+1)-\\dfrac{1}{2}\\bigg(\\dfrac{1}{2}+1\\bigg)\\bigg]"
"\\Delta E_{so}=2\\alpha\\dfrac{Z\\hbar^3}{4m^2c}\\dfrac{1}{r^3}"
Comments
Leave a comment