Suppose we have a normalized wave function at time t = 0
dtd∫−∞∞∣Ψ(x,t)∣2dx=∫−∞∞∂t∂∣Ψ(x,t)∣2dx
Writing Schrodinger equation as
dtdΨ=2miℏ∂x2∂2Ψ−ℏiVΨ
Similarly,
∂t∂Ψ∗=−2miℏ∂x2∂2Ψ+ℏiVΨ
Substituting in the first equation and rearranging, we get,
⇒∂t∂∣Ψ∣2=2miℏ(Ψ∗∂x2∂2Ψ−Ψ∂x2∂2Ψ∗)
⇒∂t∂∣Ψ∣2=∂x∂[2miℏ(Ψ∗∂x2∂2Ψ−Ψ∂x2∂2Ψ∗)]
⇒dtd∫−∞∞∣Ψ(x,t)∣2dx=2miℏ(Ψ∗∂x2∂2Ψ−Ψ∂x2∂2Ψ∗)−∞∞
Since, Ψ(x,t)⟶0 as x⟶∞ for Ψ(x,t) to be non normalizable,
it follows
dtd∫−∞∞∣Ψ(x,t)∣2dx=0
Comments