Answer to Question #156138 in Quantum Mechanics for Anand

Question #156138

 A satellite of mass 2500 kg is orbiting the Earth in an elliptical orbit. At the apagee, the 

altitude of the satellite is 3000 km, while at the perigee its altitude is 1000 km. Calculate 

the energy and angular momentum of the satellite and its speed at the apagee and perigee.


1
Expert's answer
2021-01-19T07:11:45-0500

(a) We can find the energy of the satellite from the law of konservation of energy:


Esat=KEa+PEa=KEp+PEp,E_{sat}=KE_a+PE_a=KE_p+PE_p,Esat=12mva2GMmra,E_{sat}=\dfrac{1}{2}mv_a^2-\dfrac{GMm}{r_a},

Esat=122500 kg(6114 ms)26.671011 Nm2kg25.971024 kg2500 kg9.38106 m=5.941010 J.E_{sat}=\dfrac{1}{2}\cdot 2500\ kg\cdot(6114\ \dfrac{m}{s})^2-\dfrac{6.67\cdot10^{-11}\ \dfrac{Nm^2}{kg^2}\cdot5.97\cdot10^{24}\ kg \cdot2500\ kg}{9.38\cdot10^6\ m}=-5.94\cdot10^{10}\ J.

(b) We can find the angular momentum of the satellite from the formula:


L=mvara=mvprp,L=mv_ar_a=mv_pr_p,

here, m=2500 kgm=2500\ kg is the mass of the satellite, ra=(RE+ha)r_a=(R_E+h_a) is the apagee distance, rp=(RE+hp)r_p=(R_E+h_p) is the perigee distance, RE=6.38106 mR_E=6.38\cdot10^6\ m is the radius of the Earth, ha=3.0106 mh_a=3.0\cdot10^6\ m is the altitude of apagee, hp=1.0106 mh_p=1.0\cdot10^6\ m is the altitude of perigee, vav_a, vpv_p is the speed of the satellite at apogee and perigee, respectivelly.

Let's first calculate rar_a and rpr_p:


ra=(6.38106 m+3.0106 m)=9.38106 m,r_a=(6.38\cdot10^6\ m+3.0\cdot10^6\ m)=9.38\cdot10^6\ m,rp=(6.38106 m+1.0106 m)=7.38106 m.r_p=(6.38\cdot10^6\ m+1.0\cdot10^6\ m)=7.38\cdot10^6\ m.

Let's also find semi-major axis of the satellite:


a=ra+rp2,a=\dfrac{r_a+r_p}{2},a=9.38106 m+7.38106 m2=8.38106 m.a=\dfrac{9.38\cdot10^6\ m+7.38\cdot10^6\ m}{2}=8.38\cdot10^6\ m.

Then, we can find the speed of the satellite at apogee and perigee from the vis-viva equation:


v=GM(2r1a).v=\sqrt{GM(\dfrac{2}{r}-\dfrac{1}{a})}.

Then, the speed of the satellite at the apagee will be:

va=6.671011 Nm2kg25.971024 kg(29.38106 m18.38106 m)=6114 ms.v_a=\sqrt{6.67\cdot10^{-11}\ \dfrac{Nm^2}{kg^2}\cdot5.97\cdot10^{24}\ kg\cdot(\dfrac{2}{9.38\cdot10^6\ m}-\dfrac{1}{8.38\cdot10^6\ m})}=6114\ \dfrac{m}{s}.

vp=6.671011 Nm2kg25.971024 kg(27.38106 m18.38106 m)=7771 ms.v_p=\sqrt{6.67\cdot10^{-11}\ \dfrac{Nm^2}{kg^2}\cdot5.97\cdot10^{24}\ kg\cdot(\dfrac{2}{7.38\cdot10^6\ m}-\dfrac{1}{8.38\cdot10^6\ m})}=7771\ \dfrac{m}{s}.

Finally, we can calculate the angular momentum of the satellite:


L=2500 kg6114 ms9.38106 m=1.431014 kgm2s.L=2500\ kg\cdot 6114\ \dfrac{m}{s}\cdot 9.38\cdot10^6\ m=1.43\cdot10^{14}\ \dfrac{kgm^2}{s}.

Answer:

a) Esat=5.941010 J.E_{sat}=-5.94\cdot10^{10}\ J.

b) L=1.431014 kgm2s.L=1.43\cdot10^{14}\ \dfrac{kgm^2}{s}.

c) va=6114 ms,vp=7771 ms.v_a=6114\ \dfrac{m}{s}, v_p=7771\ \dfrac{m}{s}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment