Answer to Question #156137 in Quantum Mechanics for Anand

Question #156137

 A particle of mass 3m initially moving with a speed u in the positive x-direction 

collides with a second particle of mass m moving in the opposite direction with an 

unknown speed v. After collision the mass 3m moves along the negative y-direction 

with a speed u/2 and the mass m moves with a speed v in a direction making an angle 

of 45˚ with the positive x-direction. Determine v and v in units of u. Is the collision 

elastic?


1
Expert's answer
2021-01-19T07:11:42-0500

(1)


3mu2=mvsin45°v=3u23m\cdot\frac{u}{2}=mv'\cdot\sin45°\to v'=\frac{3u}{\sqrt{2}} . Answer


(2)


3mumv=mvcos45°3m\cdot u-mv=mv'\cdot\cos45°


3mumv=m3u2cos45°v=3u23m\cdot u-mv=m\cdot \frac{3u}{\sqrt{2}}\cdot\cos45°\to v=\frac{3u}{2} . Answer


(3)


before collide


KE=3mu22+mv22=3mu22+m(3u/2)22=218mu2KE=\frac{3mu^2}{2}+\frac{mv^2}{2}=\frac{3mu^2}{2}+\frac{m(3u/2)^2}{2}=\frac{21}{8}mu^2


after collide


KE=3m(u/2)22+m(3u/2)22=218mu2KE=\frac{3m\cdot (u/2)^2}{2}+\frac{m\cdot(3u/\sqrt{2})^2}{2}=\frac{21}{8}mu^2


So, the collision is elastic. Answer






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment