Question #156136

A disc rotates with a period of 0.50s. Its moment of inertia about its axis of rotation is 0.08 Kg m²

. A small mass is dropped onto the disc and rotates with it. The moment of 

inertia of the mass about the axis of rotation is 0.02 kg m²

. Determine the final period 

of the rotating disc and mass system.


1
Expert's answer
2021-01-19T07:11:39-0500

Let's apply the law of conservation of angular momentum:


Li=Lf,L_i=L_f,Idiscωdisc,i+Imassωmass,i=(Idisc+Imass)ωfI_{disc}\omega_{disc,i}+I_{mass}\omega_{mass,i}=(I_{disc}+I_{mass})\omega_{f}

Since, initially small mass is at rest, we get:


Idiscωdisc,i=(Idisc+Imass)ωf.I_{disc}\omega_{disc,i}=(I_{disc}+I_{mass})\omega_{f}.

Taking into account that ω=2πT,\omega=\dfrac{2\pi}{T}, we get:


Idisc2πTdisc,i=(Idisc+Imass)2πTdisc,f,I_{disc}\dfrac{2\pi}{T_{disc,i}}=(I_{disc}+I_{mass})\dfrac{2\pi}{T_{disc, f}},Tdisc,f=(IdiscTdisc,i(Idisc+Imass))1,T_{disc,f}=(\dfrac{I_{disc}}{T_{disc,i}(I_{disc}+I_{mass})})^{-1},Tdisc,f=(0.08 kgm20.5 s(0.08 kgm2+0.02 kgm2))1=0.625 s.T_{disc,f}=(\dfrac{0.08\ kg\cdot m^2}{0.5\ s\cdot(0.08\ kg\cdot m^2+0.02\ kg\cdot m^2)})^{-1}=0.625\ s.

Answer:

Tdisc,f=0.625 s.T_{disc,f}=0.625\ s.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS