Question #156135

A merry-go-round is initially at rest. On being given a constant angular acceleration it 

reaches an angular speed of 

1 0.50 rad/sin 10.0 s. At t = 10.0 s, determine the 

magnitude of: (i) the angular acceleration of the merry-go-round ; (ii) the linear velocity 

of a child sitting on the merry-go-round at a distance of 3.0 m from its centre; (iii) the 

tangential acceleration of the child; (iv) the centripetal acceleration of the child; and 

(v) the net acceleration of the child.


1
Expert's answer
2021-01-16T17:21:19-0500

i) By the definition of the angular acceleration, we have:


α=ΔωΔt=10.5 rads10.0 s=1.05 rads2.\alpha=\dfrac{\Delta \omega}{\Delta t}=\dfrac{10.5\ \dfrac{rad}{s}}{10.0\ s}=1.05\ \dfrac{rad}{s^2}.

ii) We can find the linear velocity of the child sitting on the merry-go-round at a distance of 3.0 m from its centre from the formula:


v=ωr=10.5 rads3.0 m=31.5 ms.v=\omega r=10.5\ \dfrac{rad}{s}\cdot 3.0\ m=31.5\ \dfrac{m}{s}.

iii) We can find the tangential acceleration of the child from the formula:


at=rα=3.0 m1.05 rads2=3.15 ms2.a_t=r\alpha=3.0\ m\cdot1.05\ \dfrac{rad}{s^2}=3.15\ \dfrac{m}{s^2}.

iv) We can find the centripetal acceleration of the child from the formula:


ac=v2r=(31.5 ms)23.0 m=330.75 ms2.a_c=\dfrac{v^2}{r}=\dfrac{(31.5\ \dfrac{m}{s})^2}{3.0\ m}=330.75\ \dfrac{m}{s^2}.

v) We can find the net acceleration of the child from the Pythagorean theorem:


anet=at2+ac2,a_{net}=\sqrt{a_t^2+a_c^2},anet=(3.15 ms2)2+(330.75 ms2)2=330.76 ms2.a_{net}=\sqrt{(3.15\ \dfrac{m}{s^2})^2+(330.75\ \dfrac{m}{s^2})^2}=330.76\ \dfrac{m}{s^2}.

Answer:

i) α=1.05 rads2.\alpha=1.05\ \dfrac{rad}{s^2}.

ii) v=31.5 ms.v=31.5\ \dfrac{m}{s}.

iii) at=3.15 ms2.a_t=3.15\ \dfrac{m}{s^2}.

iv) ac=330.75 ms2.a_c=330.75\ \dfrac{m}{s^2}.

v) anet=330.76 ms2.a_{net}=330.76\ \dfrac{m}{s^2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS