Solution
The forces equilibrium conditions give
"\\sum F_x=0:\\; N'-F_{f2}=0;\\\\\n\\sum F_y=0:\\; N''+F_{f1}-mg=0"
The friction force is related with normal reaction by relation
"F_{f1}=\\mu N_1;\\: F_{f2}=\\mu N_2"Hence
"N''=\\frac{mg}{\\mu^2+1},\\: N'=\\frac{\\mu mg}{\\mu^2+1}"The momentum equilibrium condition gives
"F_{f1}L\\cos\\alpha+N'L\\sin\\alpha-mg\\frac{L}{2}\\cos\\alpha=0"So
"\\tan\\alpha=\\frac{mg\/2-F_{f1}}{N'}=\\frac{mg\/2-\\mu N'}{N'}""=\\frac{mg}{2N'}-\\mu=\\frac{\\mu^2+1}{2\\mu}-\\mu=\\frac{1-\\mu^2}{2\\mu}"Finally
"\\alpha=\\tan^{-1}\\left(\\frac{1-\\mu^2}{2\\mu}\\right)=\\tan^{-1}\\left(\\frac{1-0.5^2}{2\\times 0.5}\\right)=37^{\\circ}"
Comments
Leave a comment