Given, energy of alpha particle E=7.8MeV=12.5×10−13J ,Thickness t=0.30μm=3×10−7 .
Let, Z1,Z2 be atomic number of Gold and alpha particle respectively.
n=ρgoldNA=5.9×1028atoms/m3 .
To calculate the number of fractions of alpha particle scattered by angle grater than or equal to ϕ
is given by,
F(ϕ)=nπt(8πϵ0EZ1Z2e2)2cot2(ϕ/2)
i).
The fraction of alpha particle scattered between 1.5∘≤ϕ≤2.5∘ is
F(1.5∘)−F(2.5∘)=0.1176×10−3(cot2(21.5∘)−cot2(22.5∘))F(1.5∘)−F(2.5∘)=0.1176×10−3×3735.10F(1.5∘)−F(2.5∘)=0.439ii).
Again, from above main formula we get,
F(10∘)F(2∘)=cot2(210∘)cot2(22∘)F(10∘)F(2∘)=cot2(5∘)cot2(1∘)F(10∘)F(2∘)=25.12
Comments