Question #121946
a) A beam of 7.8-MeV α particles scatters from a gold foil of thickness 0.30 μm.
i) What fraction of the α particles is scattered between 1.5° and 2.5°?
ii) What is the ratio of α particles scattered through angles greater than 2° to the number
scattered through angles greater than 10°?
1
Expert's answer
2020-06-17T09:18:53-0400

Given, energy of alpha particle E=7.8MeV=12.5×1013JE=7.8\:MeV=12.5\times 10^{-13}J ,Thickness t=0.30μm=3×107t=0.30\mu m=3\times 10^{-7} .

Let, Z1,Z2Z_1,Z_2 be atomic number of Gold and alpha particle respectively.

n=ρgoldNA=5.9×1028atoms/m3n=\rho_{gold}N_{A}=5.9\times 10^{28} \:atoms/m^3 .


To calculate the number of fractions of alpha particle scattered by angle grater than or equal to ϕ\phi

is given by,

F(ϕ)=nπt(Z1Z2e28πϵ0E)2cot2(ϕ/2)F(\phi)=n\pi t\bigg(\frac{Z_1Z_2e^2}{8\pi\epsilon_0E}\bigg)^2\cot^2(\phi/2)



i).

The fraction of alpha particle scattered between 1.5ϕ2.51.5^{\circ}\leq\phi\leq2.5^{\circ} is

F(1.5)F(2.5)=0.1176×103(cot2(1.52)cot2(2.52))F(1.5)F(2.5)=0.1176×103×3735.10F(1.5)F(2.5)=0.439F(1.5^{\circ})-F(2.5^{\circ})=0.1176\times10^{-3}\bigg(\cot^2(\frac{1.5^{\circ}}{2})-\cot^2(\frac{2.5^{\circ}}{2})\bigg)\\ F(1.5^{\circ})-F(2.5^{\circ})=0.1176\times10^{-3}\times3735.10\\ F(1.5^{\circ})-F(2.5^{\circ})=0.439

ii).

Again, from above main formula we get,

F(2)F(10)=cot2(22)cot2(102)F(2)F(10)=cot2(1)cot2(5)F(2)F(10)=25.12\frac{F(2^{\circ})}{F(10^{\circ})}=\frac{\cot^2(\frac{2^{\circ}}{2})}{\cot^2(\frac{10^{\circ}}{2})}\\ \frac{F(2^{\circ})}{F(10^{\circ})}=\frac{\cot^2(1^{\circ})}{\cot^2(5^{\circ})}\\ \frac{F(2^{\circ})}{F(10^{\circ})}=25.12


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS