2020-06-11T19:30:18-04:00
a) A beam of 7.8-MeV α particles scatters from a gold foil of thickness 0.30 μm.
i) What fraction of the α particles is scattered between 1.5° and 2.5°?
ii) What is the ratio of α particles scattered through angles greater than 2° to the number
scattered through angles greater than 10°?
1
2020-06-15T10:35:35-0400
I)
f ( 1.5 ) − f ( 2.5 ) = π n t ( Z 1 Z 2 e 2 8 π ϵ 0 K ) 2 ( cot 2 0.5 ( 1.5 ) − cot 2 0.5 ( 2.5 ) ) f(1.5)-f(2.5)=\pi nt\left(\frac{Z_1Z_2e^2}{8\pi\epsilon_0K}\right)^2\\(\cot^2{0.5(1.5)}-\cot^2{0.5(2.5)}) f ( 1.5 ) − f ( 2.5 ) = πn t ( 8 π ϵ 0 K Z 1 Z 2 e 2 ) 2 ( cot 2 0.5 ( 1.5 ) − cot 2 0.5 ( 2.5 ) )
f ( 1.5 ) − f ( 2.5 ) = π ( 5.9 ⋅ 1 0 − 6 ) ( 0.3 ⋅ 1 0 28 ) ( ( 2 ) ( 79 ) ( 1.6 ⋅ 1 0 − 19 ) 2 8 π ( 8.85 ⋅ 1 0 − 12 ) ( 7.8 ⋅ 1 0 6 ) ( 1.6 ⋅ 1 0 − 19 ) ) 2 ( cot 2 0.5 ( 1.5 ) − cot 2 0.5 ( 2.5 ) ) f(1.5)-f(2.5)=\pi (5.9\cdot10^{-6})(0.3\cdot10^{28})\\\left(\frac{(2)(79)(1.6\cdot10^{-19})^2}{8\pi(8.85\cdot10^{-12})(7.8\cdot10^{6})(1.6\cdot10^{-19})}\right)^2\\(\cot^2{0.5(1.5)}-\cot^2{0.5(2.5)}) f ( 1.5 ) − f ( 2.5 ) = π ( 5.9 ⋅ 1 0 − 6 ) ( 0.3 ⋅ 1 0 28 ) ( 8 π ( 8.85 ⋅ 1 0 − 12 ) ( 7.8 ⋅ 1 0 6 ) ( 1.6 ⋅ 1 0 − 19 ) ( 2 ) ( 79 ) ( 1.6 ⋅ 1 0 − 19 ) 2 ) 2 ( cot 2 0.5 ( 1.5 ) − cot 2 0.5 ( 2.5 ) )
f ( 1.5 ) − f ( 2.5 ) = 0.044 f(1.5)-f(2.5)=0.044 f ( 1.5 ) − f ( 2.5 ) = 0.044 II)
f ( 2 ) f ( 10 ) = cot 2 ( 0.5 ( 2 ) ) cot 2 ( 0.5 ( 10 ) ) = 25.1 \frac{f(2)}{f(10)}=\frac{\cot^2(0.5(2))}{\cot^2(0.5(10))}=25.1 f ( 10 ) f ( 2 ) = cot 2 ( 0.5 ( 10 )) cot 2 ( 0.5 ( 2 )) = 25.1
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments