As, both particles have equal energies and "K= \\frac {p^2}{2m}" ', thus. the momentum of the alpha particle (since, more massive particle than proton) will be smaller, and the velocity of the proton will be greater. More is the velocity ,thus proton is more likely to get penetrate the barrier.
Now, we know that,
"k_{p}a = \\frac{\\sqrt{2m_p(V_0 \u2212 E)}}{\\hbar}a\\\\ k_{\\alpha} a=\\frac{\\sqrt{2m_{\\alpha}(V_0 \u2212 E)}}{\\hbar}a"
"k pa= \\frac {\\sqrt (2(938.3MeV\/c^ 22)(5 MeV))} {0.6582\u00d710 \u221215eV\u22c5s}(10 \u221214m)=4.9089"
Since, mass of α particle is "m \n_\u03b1\n\u200b\t\n \u22484m_\np\n\u200b"
"k_ \n\u03b1\n\u200b\t\n a=2k_\np\n\u200b\t\n a=9.8179"
Now, we have to calculate the transmission coefficient for both particles to calculate the probability,Hence
"T=(1+ \\frac{sinh ^2(ka)}{4 \\frac {E }{V _0}(1\u2212 V\\frac {E }{V _0})})^{-1}"
Thus, substitute value , we get
"T \n_p=2.17869438\u00d710^{\u22124}"
"T _\u03b1=1.1866985\u00d710^{\u22128}"
Thus, corresponding probability is
"0.00217\\%\\\\ 0.000000118\\%"
respectively.
Comments
Leave a comment