Question #270044

A football is kicked with a velocity of 20 m/s at an angle of 37° with the horizontal. Determine:


a. Maximum height reached by the ball


b. Time of flight


c. Horizontal distance traveled

1
Expert's answer
2021-11-22T16:16:04-0500

(a) Let's first find the time that the football takes to reach the maximum height:


v=v0sinθgt,v=v_0sin\theta-gt,0=v0sinθgt,0=v_0sin\theta-gt,t=v0sinθg.t=\dfrac{v_0sin\theta}{g}.

Then, we can find the maximum height reached by the ball from the kinematic equation:


ymax=v0tsinθ12gt2.y_{max}=v_0tsin\theta-\dfrac{1}{2}gt^2.

Substituting tt into the previous equation, we get:


ymax=v0sinθ(v0sinθg)12g(v0sinθg)2,y_{max}=v_0sin\theta(\dfrac{v_0sin\theta}{g})-\dfrac{1}{2}g(\dfrac{v_0sin\theta}{g})^2,ymax=v02sin2θ2g,y_{max}=\dfrac{v_0^2sin^2\theta}{2g},ymax=(20 ms)2sin2372×9.8 ms2=7.39 m.y_{max}=\dfrac{(20\ \dfrac{m}{s})^2sin^237^{\circ}}{2\times9.8\ \dfrac{m}{s^2}}=7.39\ m.

(b) We can find the time of flight as follows:


tflight=2t=2v0sinθg,t_{flight}=2t=\dfrac{2v_0sin\theta}{g},tflight=2×20 ms×sin379.8 ms2=2.46 s.t_{flight}=\dfrac{2\times20\ \dfrac{m}{s}\times sin37^{\circ}}{9.8\ \dfrac{m}{s^2}}=2.46\ s.

(c) We can find the horizontal distance traveled as follows:


x=v0tflightcosθ=20 ms×2.46 s×cos37=39.3 m.x=v_0t_{flight}cos\theta=20\ \dfrac{m}{s}\times2.46\ s\times cos37^{\circ}=39.3\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS