Two forces, F1 = 8.0 N, 60o Northwest and F2 = 12.0 N, Southwest, are applied to a particle at the origin. What third force is needed so that the particle will not be displaced from the origin?
Fx=−8⋅cos60°−12⋅cos45°=−12.5 (N)F_x=-8\cdot\cos60°-12\cdot\cos45°=-12.5\ (N)Fx=−8⋅cos60°−12⋅cos45°=−12.5 (N)
Fy=8⋅sin60°−12⋅sin45°=−1.6 (N)F_y=8\cdot\sin60°-12\cdot\sin45°=-1.6\ (N)Fy=8⋅sin60°−12⋅sin45°=−1.6 (N)
F=12.52+1.62=12.6 (N)F=\sqrt{12.5^2+1.6^2}=12.6\ (N)F=12.52+1.62=12.6 (N)
tanθ=1.612.5=0.128→θ=7.3°\tan\theta=\frac{1.6}{12.5}=0.128\to \theta=7.3°tanθ=12.51.6=0.128→θ=7.3°N of E.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments