170 km/h are 47.22 m/s.
Find the time for the ball to 'fall' from 2.5 m to 0.91 m at initial downward velocity of "v_y=v\\sin\\theta:"
On the other hand, the time depends on the horizontal component of velocity as well:
Substitute:
"0.91=2.5-v\\sin\\theta \u00b7\\frac R{v\\cos\\theta} -\\frac{g(\\frac R{v\\cos\\theta})^2}{2},\\\\\\space\\\\\n-1.59=-R\\tan\\theta-\\frac{gR^2}{2v^2\\cos^2\\theta},\\\\\\space\\\\\n-1.59=-R\\tan\\theta-\\frac{gR^2}{2v^2}(\\tan^2\\theta+1),\\\\\\space\\\\\n\\tan^2\\theta\u00b7\\frac{gR^2}{2v^2}+\\tan\\theta\u00b7R+\\bigg(\\frac{gR^2}{2v^2}-1.59\\bigg)=0,\\\\\\space\\\\\n\\tan\\theta=\\frac{-R\\pm\\sqrt{R^2-4\u00b7(gR^2\/(2v^2)-1.59)\u00b7gR^2\/(2v^2)}}{gR^2\/v^2},\\\\\\space\\\\\n\\tan\\theta_1=7.32,\\\\\n\\tan\\theta_2=-31.1.\\\\\\theta=82.2\u00b0,"
the angle below the horizontal is "90\u00b0-\\theta=7.77\u00b0."
Comments
Leave a comment