(a) We can find the horizontal and vertical components of the initial velocity as follows:
v 0 x = v 0 c o s θ = 25 m s ⋅ c o s 6 0 ∘ = 12.5 m s , v_{0x}=v_0cos\theta=25\ \dfrac{m}{s}\cdot cos60^{\circ}=12.5\ \dfrac{m}{s}, v 0 x = v 0 cos θ = 25 s m ⋅ cos 6 0 ∘ = 12.5 s m , v 0 y = v 0 s i n θ = 25 m s ⋅ s i n 6 0 ∘ = 21.65 m s . v_{0y}=v_0sin\theta=25\ \dfrac{m}{s}\cdot sin60^{\circ}=21.65\ \dfrac{m}{s}. v 0 y = v 0 s in θ = 25 s m ⋅ s in 6 0 ∘ = 21.65 s m . (b) We can find the time to reach the maximum height from the kinematic equation:
v y = v 0 y − g t , v_{y}=v_{0y}-gt, v y = v 0 y − g t , 0 = v 0 y − g t 0=v_{0y}-gt 0 = v 0 y − g t t = v 0 y g = 21.65 m s 9.8 m s 2 = 2.21 s . t=\dfrac{v_{0y}}{g}=\dfrac{21.65\ \dfrac{m}{s}}{9.8\ \dfrac{m}{s^2}}=2.21\ s. t = g v 0 y = 9.8 s 2 m 21.65 s m = 2.21 s . (c) We can find time of flight as follows:
t f l i g h t = 2 t = 2 ⋅ 2.21 s = 4.42 s . t_{flight}=2t=2\cdot2.21\ s=4.42\ s. t f l i g h t = 2 t = 2 ⋅ 2.21 s = 4.42 s . (d) We can find the maximum height attained by the object from the kinematic equation:
y m a x = v 0 y t + 1 2 g t 2 , y_{max}=v_{0y}t+\dfrac{1}{2}gt^2, y ma x = v 0 y t + 2 1 g t 2 , y m a x = 21.65 m s ⋅ 2.21 s + 1 2 ⋅ ( − 9.8 m s 2 ) ⋅ ( 2.21 s ) 2 , y_{max}=21.65\ \dfrac{m}{s}\cdot2.21\ s+\dfrac{1}{2}\cdot(-9.8\ \dfrac{m}{s^2})\cdot(2.21\ s)^2, y ma x = 21.65 s m ⋅ 2.21 s + 2 1 ⋅ ( − 9.8 s 2 m ) ⋅ ( 2.21 s ) 2 , y m a x = 23.9 m . y_{max}=23.9\ m. y ma x = 23.9 m . (e) We can find the range of the object from the kinematic equation:
x = v 0 x t f l i g h t = 12.5 m s ⋅ 4.42 s = 55.25 m . x=v_{0x}t_{flight}=12.5\ \dfrac{m}{s}\cdot4.42\ s=55.25\ m. x = v 0 x t f l i g h t = 12.5 s m ⋅ 4.42 s = 55.25 m . (f) Let's first find the vertical component of the object's velocity just before it strikes the ground:
v y = − g t = − 9.8 m s 2 ⋅ 2.21 s = − 21.6 m s . v_y=-gt=-9.8\ \dfrac{m}{s^2}\cdot2.21\ s=-21.6\ \dfrac{m}{s}. v y = − g t = − 9.8 s 2 m ⋅ 2.21 s = − 21.6 s m . Since the horizontal component of the object's velocity doesn't change during the flight, we can write:
v x = v 0 x = 12.5 m s . v_x=v_{0x}=12.5\ \dfrac{m}{s}. v x = v 0 x = 12.5 s m . Finally, we can find the object's velocity upon striking the ground from the Pythagorean theorem:
v = v x 2 + v y 2 = ( 12.5 m s ) 2 + ( − 21.6 m s ) 2 = 24.9 m s . v=\sqrt{v_x^2+v_y^2}=\sqrt{(12.5\ \dfrac{m}{s})^2+(-21.6\ \dfrac{m}{s})^2}=24.9\ \dfrac{m}{s}. v = v x 2 + v y 2 = ( 12.5 s m ) 2 + ( − 21.6 s m ) 2 = 24.9 s m .
Comments