Write down Gauss's theorem as he wrote it:
∫ ( d P d x + d Q d y + d R d z ) d ω = ∫ ( P cos α + Q cos β + R cos γ ) d s \int\bigg(\frac{dP}{dx}+\frac{dQ}{dy}+\frac{dR}{dz}\bigg)d\omega=\int(P\cos\alpha+Q\cos\beta+R\cos\gamma)ds ∫ ( d x d P + d y d Q + d z d R ) d ω = ∫ ( P cos α + Q cos β + R cos γ ) d s
However, another formula is famous in the field of electromagnetism:
∮ E ⃗ d S ⃗ = Q net ϵ 0 . \oint\vec{E}\vec{dS}=\frac{Q_\text{net}}{\epsilon_0}. ∮ E d S = ϵ 0 Q net .
Obtain inverse square law. For the electric field from a point charge, we have
∮ E ⃗ d S ⃗ = ∫ E d S cos 0 ° , ∮ E ⃗ d S ⃗ = E ∫ d S = E ( 4 π R 2 ) , \oint\vec{E}\vec{dS}=\int EdS\cos0°,\\\space\\
\oint\vec{E}\vec{dS}=E\int dS=E(4\pi R^2),\\\space\\ ∮ E d S = ∫ E d S cos 0° , ∮ E d S = E ∫ d S = E ( 4 π R 2 ) , with Gauss's theorem we have
∮ E ⃗ d S ⃗ = Q net ϵ 0 , E ( 4 π R 2 ) = Q net ϵ 0 , E = 1 4 π ϵ 0 Q R 2 . \oint\vec{E}\vec{dS}=\frac{Q_\text{net}}{\epsilon_0},\\\space\\
E(4\pi R^2)=\frac{Q_\text{net}}{\epsilon_0},\\\space\\
E=\frac{1}{4\pi\epsilon_0}\frac{Q}{R^2}. ∮ E d S = ϵ 0 Q net , E ( 4 π R 2 ) = ϵ 0 Q net , E = 4 π ϵ 0 1 R 2 Q .
Comments