Write down Gauss's theorem as he wrote it:
"\\int\\bigg(\\frac{dP}{dx}+\\frac{dQ}{dy}+\\frac{dR}{dz}\\bigg)d\\omega=\\int(P\\cos\\alpha+Q\\cos\\beta+R\\cos\\gamma)ds"
However, another formula is famous in the field of electromagnetism:
"\\oint\\vec{E}\\vec{dS}=\\frac{Q_\\text{net}}{\\epsilon_0}."
Obtain inverse square law. For the electric field from a point charge, we have
"\\oint\\vec{E}\\vec{dS}=\\int EdS\\cos0\u00b0,\\\\\\space\\\\\n\\oint\\vec{E}\\vec{dS}=E\\int dS=E(4\\pi R^2),\\\\\\space\\\\" with Gauss's theorem we have
"\\oint\\vec{E}\\vec{dS}=\\frac{Q_\\text{net}}{\\epsilon_0},\\\\\\space\\\\\nE(4\\pi R^2)=\\frac{Q_\\text{net}}{\\epsilon_0},\\\\\\space\\\\\nE=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{R^2}."
Comments
Leave a comment