Four masses are located in the corners of a square. Calculate the magnitude and direction of the gravitational field at the center of the square. Given: m₁ = 85 kg, m₂ = 3 kg, m₃ = 3 kg, m₄ = 85 kg r = 8 m, G = 6.674×10–11 N·m²/kg².
"E=F\/m=G\\frac{M}{a^2}"
"a^2+a^2=8^2\\to2a^2=64\\to a=4\\sqrt2"
"E_1=E_4=G\\frac{m_1}{a^2}=6.674\\cdot10^{-11}\\cdot\\frac{85}{(4\\sqrt2)^2}=17.7\\cdot10^{-11} \\ (N\/kg)"
"E_2=E_3=G\\frac{m_2}{a^2}=6.674\\cdot10^{-11}\\cdot\\frac{3}{(4\\sqrt2)^2}=0.6\\cdot10^{-11} \\ (N\/kg)"
"|\\vec E_1+\\vec E_4|=2\\cdot17.7\\cdot10^{-11}\\cdot\\cos45\u00b0=25\\cdot10^{-11}\\ (N\/kg)"
"|\\vec E_2+\\vec E_3|=2\\cdot0.6\\cdot10^{-11}\\cdot\\cos45\u00b0=0.85\\cdot10^{-11}\\ (N\/kg)"
"E_{total}=25\\cdot10^{-11}-0.85\\cdot10^{-11}=24.15\\cdot10^{-11}\\ (N\/kg)" . Answer
Comments
Leave a comment