Three masses are located in the corners of an equilateral triangle. Find the magnitude and direction of the gravitational field at the center of the triangle. Given: m₁ = 22 kg, m₂ = 30 kg, m₃ = 30 kg, r = 12 cm. G = 6.674×10–11 N·m²/kg².
Let "r" is the distance between the masses and the center of an equilateral triangle. So, we have
"E_1=G\\frac{m_1}{r^2}=6.674\\cdot10^{-11}\\cdot \\frac{22}{0.12^2}\\approx1.02\\cdot10^{-7}\\ (N\/kg)"
"E_2=G\\frac{m_2}{r^2}=6.674\\cdot10^{-11}\\cdot \\frac{30}{0.12^2}\\approx1.39\\cdot10^{-7}\\ (N\/kg)"
"E_3=G\\frac{m_3}{r^2}=6.674\\cdot10^{-11}\\cdot \\frac{30}{0.12^2}\\approx1.39\\cdot10^{-7}\\ (N\/kg)"
"|\\vec E_2+\\vec E_3|=2\\cdot1.39\\cdot10^{-7}\\cdot\\cos60\u00b0=1.39\\cdot10^{-7}\\ (N\/kg)"
The gravitational field at the center of the triangle
"E=1.39\\cdot10^{-7}-1.02\\cdot10^{-7}=0.37\\cdot10^{-7}\\ (N\/kg)" . Answer
Comments
Leave a comment