(i)
"d= \\frac{1}{N_p} = \\frac{10^{-3}}{300} \\\\\n\nN_p = 300 \\times 10^3 \\\\\n\n\u03bb_1 = 400 \\times 10^{-9} \\;m \\\\\n\n\u03bb_2 = 600 \\times 10^{-9} \\;m \\\\\n\ndsin \u03b8_1 = n\u03bb_1 \\\\\n\n\\frac{10^{-3}}{300} \\times sin \u03b8_1 = 3 \\times 400 \\times 10^{-9} \\\\\n\nsin \u03b8_1 = 12 \\times 3 \\times 10^{-2} \\\\\n\n\u03b8_1 = sin^{-1} (0.36) \\\\\n\n\u03b8_1=21.1 \\;\u00b0 \\\\\n\n\\frac{10^{-3}}{300} sin \u03b8_2 = 3 \\times \u03bb_2 \\\\\n\n\\frac{10^{-3}}{300} sin \u03b8_2 = 3 \\times 600 \\times 10^{-9} \\\\\n\n\u03b8_2 = sin^{-1} (0.54) \\\\\n\n\u03b8_2 = 32.68 \\;\u00b0 \\\\\n\n\u0394 \u03b8 = \u03b8_2- \u03b8_1 \\\\\n\n\u0394 \u03b8 = 32.68-21.1 = 11.58 \\;\u00b0"
(ii)
"dsin \u03b8^*_1 = \\frac{m\u03bb_1}{n} \\\\\n\nn = 1.33 \\\\\n\nm=3 \\\\\n\n\u03b8^*_1 = sin^{-1} (\\frac{3 \\times 400 \\times 10^{-9} \\times 300 \\times 10^3}{1.33}) \\\\\n\n\u03b8^*_1 = sin^{-1} (0.2706) = 15.699 \\;\u00b0 \\\\\n\ndsin \u03b8^*_2 = \\frac{m\u03bb_2}{n} \\\\\n\n\u03bb_2 = 600 \\times 10^{-9} \\; m \\\\\n\n\u03b8^*_2 = sin^{-1} (\\frac{3 \\times 600 \\times 10^{-9} \\times 300 \\times 10^3}{1.33}) \\\\\n\n\u03b8^*_2 = sin^{-1} (0.406) = 23.953 \\;\u00b0 \\\\\n\n\u0394 \u03b8^* = \u03b8^*_2- \u03b8^*_1 \\\\\n\n\u0394 \u03b8^* = 23.953-15.699 = 8.254 \\;\u00b0"
Comments
Leave a comment