As per the given question,
Let the focal length of the lens 1 is f1 and focal length of the lens 2 is f2,
"R_1=8cm, R_2=2cm, R_1'=\\infty , R_2'=(10+R)"
R=4
a) We know that
"\\dfrac{1}{f_1}=\\dfrac{1}{R_1}+\\dfrac{1}{R_2}"
"\\dfrac{1}{f_1}=\\dfrac{1}{-8}-\\dfrac{1}{2}=\\dfrac{-5}{8}"
So, "f_1=\\dfrac{-8}{5}=-1.6cm"
Similarly,
"\\dfrac{1}{f_2}=\\dfrac{1}{R_1'}+\\dfrac{1}{R_2'}=\\dfrac{1}{\\infty}+\\dfrac{1}{-14}"
Hence focal length of the lens 2 will be "f_2=-14cm"
b) Net focal length "f_{net}"
"\\dfrac{1}{f_{net}}=\\dfrac{1}{f_1}+\\dfrac{1}{f_2}+\\dfrac{d}{f_1f_2}"
Now, substituting the values,
"\\dfrac{1}{f_{net}}=\\dfrac{1}{-1.6}+\\dfrac{1}{-14}+\\dfrac{18-12}{1.6\\times 14}"
"\\dfrac{1}{f_{net}}=-(\\dfrac{14+1.6-6}{1.6\\times 14})=\\dfrac{-9.6}{22.4}=\\dfrac{-3}{7}"
"f_{net}=\\dfrac{-7}{3}cm"
Object is at origin, so u =12cm, let the final image is at v,
"v=\\dfrac{f_{net}u}{f_{net}+u}=\\dfrac{\\dfrac{-7}{3}\\times(-12)}{-12-\\dfrac{-7}{3}}=\\dfrac{84}{-43}=-1.95cm"
c) "M=v\/u=-1.95\/(-12)=0.1625"
Comments
Leave a comment