As per the given question,
We know that I = I o cos 2 θ I=I_o \cos^2\theta I = I o cos 2 θ
When any ray of light is passing through any polarizer then, it's intensity becomes, 1/2 of the initial intensity of light,
⇒ I o / 2 = I o cos 2 θ \Rightarrow I_o/2=I_o\cos^2\theta ⇒ I o /2 = I o cos 2 θ
⇒ cos 2 θ = 1 2 \Rightarrow \cos^2\theta=\dfrac{1}{2} ⇒ cos 2 θ = 2 1
⇒ cos θ = 1 2 = cos 4 5 ∘ \Rightarrow \cos\theta=\sqrt{\dfrac{1}{2}}=\cos 45^\circ ⇒ cos θ = 2 1 = cos 4 5 ∘
θ = 4 5 ∘ \theta=45^\circ θ = 4 5 ∘
b) Now, I 2 = I 1 cos 2 θ I_2=I_1\cos^2\theta I 2 = I 1 cos 2 θ
I 2 = I o 2 cos 2 ( 10 + 8 R ) I_2=\dfrac{I_o}{2}\cos^2(10+8R) I 2 = 2 I o cos 2 ( 10 + 8 R )
Here the value of R is not given,
c) As per the question I 2 = ( R + 1 ) % o f I o / 2 I_2= (R+1)\% of I_o/2 I 2 = ( R + 1 ) % o f I o /2
⇒ ( R + 1 ) I o 2 × 100 = I o 2 cos 2 ( 10 + 8 R ) \Rightarrow (R+1)\dfrac{I_o}{2\times 100}=\dfrac{I_o}{2}\cos^2(10+8R) ⇒ ( R + 1 ) 2 × 100 I o = 2 I o cos 2 ( 10 + 8 R )
⇒ ( R + 1 ) 100 = cos 2 ( 10 + 8 R ) \Rightarrow \dfrac{(R+1)}{100}=\cos^2(10+8R) ⇒ 100 ( R + 1 ) = cos 2 ( 10 + 8 R )
value of R must be given.
Comments