As per the given question,
We know that I=Iocos2θI=I_o \cos^2\thetaI=Iocos2θ
When any ray of light is passing through any polarizer then, it's intensity becomes, 1/2 of the initial intensity of light,
⇒Io/2=Iocos2θ\Rightarrow I_o/2=I_o\cos^2\theta⇒Io/2=Iocos2θ
⇒cos2θ=12\Rightarrow \cos^2\theta=\dfrac{1}{2}⇒cos2θ=21
⇒cosθ=12=cos45∘\Rightarrow \cos\theta=\sqrt{\dfrac{1}{2}}=\cos 45^\circ⇒cosθ=21=cos45∘
θ=45∘\theta=45^\circθ=45∘
b) Now, I2=I1cos2θI_2=I_1\cos^2\thetaI2=I1cos2θ
I2=Io2cos2(10+8R)I_2=\dfrac{I_o}{2}\cos^2(10+8R)I2=2Iocos2(10+8R)
Here the value of R is not given,
c) As per the question I2=(R+1)%ofIo/2I_2= (R+1)\% of I_o/2I2=(R+1)%ofIo/2
⇒(R+1)Io2×100=Io2cos2(10+8R)\Rightarrow (R+1)\dfrac{I_o}{2\times 100}=\dfrac{I_o}{2}\cos^2(10+8R)⇒(R+1)2×100Io=2Iocos2(10+8R)
⇒(R+1)100=cos2(10+8R)\Rightarrow \dfrac{(R+1)}{100}=\cos^2(10+8R)⇒100(R+1)=cos2(10+8R)
value of R must be given.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments