Answer to Question #274653 in Molecular Physics | Thermodynamics for ben

Question #274653

Three kilograms of neon in a constant volume system. The neon is initially at 550 kPa and 350 K. Its pressure is increased to 2000 kPa by a paddle work with 210 kJ of heat added. Find (a) the final temperature, (b) the change in internal energy, (c) the change in enthalpy, (d) the nonflow work. 


1
Expert's answer
2021-12-06T09:40:20-0500

m=3  kgp1=550  kPap2=2000  kPaT1=350  KQin=210  kJm = 3 \;kg \\ p_1 = 550 \; kPa \\ p_2 = 2000 \; kPa \\ T_1 = 350 \;K \\ Q_{in} = 210 \;kJ

(a) The final temperature

Volume=constantpV=mRTpT=mRT=constantp1T1=p2T2T2=p2T1p1T2=2000×350550=1272.73  KVolume = constant \\ pV = mRT \\ \frac{p}{T} = \frac{mR}{T} = constant \\ \frac{p_1}{T_1} = \frac{p_2}{T_2} \\ T_2 = \frac{p_2T_1}{p_1} \\ T_2 = \frac{2000 \times 350}{550} = 1272.73 \;K

(b) From table Ideal gas specific heat for neon:

cp=1.0299  kJ/kg  KR=0.4119  kJ/kg  Kcpcv=R1.0299cv=0.4119cv=0.618  kJ/kg  Kc_p = 1.0299 \; kJ/kg \;K \\ R = 0.4119 \;kJ/kg \;K \\ c_p-c_v =R \\ 1.0299 -c_v = 0.4119 \\ c_v = 0.618 \;kJ/kg \;K

Change in internal energy

ΔU=mcv(T2T1)ΔU=3×0.618(1272.73350)=1710.74  kJΔU =mc_v(T_2-T_1) \\ ΔU = 3 \times 0.618(1272.73-350) = 1710.74 \; kJ

(c) Change in enthalpy

dH = ΔU + pdV

dH = ΔU = 1710.74 kJ

(d) The nonflow work =pdV=p(V2V1)=0= \int pdV = \int p(V_2-V_1) = 0

Wnonflow=0W_{nonflow} = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment