In a turbine 4500 kg/min of air expands polytropically from 425 kPa & 1360K to 101 kPa. The exponent n is equal to 1.45 for the process. Calculate the heat and work steady flow.
Solution;
For polytropic process:
"W=\\frac{mR(T_1-T_2)}{n-1}"
R=287J/kgK
To find "T_2" ,We use the relation;
"\\frac{T_2}{T_1}=\\frac{P_2}{P_1}^{\\frac{n}{n-1}}"
By substitution;
"T_2=(\\frac{101}{425})^{\\frac{1.45}{0.45}}\u00d71360K=13.26K"
Therefore;
"W=\\frac{4500\u00d7287(1360-13.26)}{1.45-1}=64.41MW"
Heat;
"Q=W+\\Delta u"
"\\Delta u=mc_v(T_2-T_1)"
"c_v=\\frac{R}{n-1}=\\frac{287}{0.45}=637.77kJ\/kgK"
"\\Delta u=4500\u00d7637.77(13.26-1360)=-64.41"
"Q=W+\\Delta u=0"
Comments
Leave a comment