Question #274651

In a turbine 4500 kg/min of air expands polytropically from 425 kPa & 1360K to 101 kPa. The exponent n is equal to 1.45 for the process. Calculate the heat and work steady flow. 


1
Expert's answer
2021-12-03T12:29:23-0500

Solution;

For polytropic process:

W=mR(T1T2)n1W=\frac{mR(T_1-T_2)}{n-1}

R=287J/kgK

To find T2T_2 ,We use the relation;

T2T1=P2P1nn1\frac{T_2}{T_1}=\frac{P_2}{P_1}^{\frac{n}{n-1}}

By substitution;

T2=(101425)1.450.45×1360K=13.26KT_2=(\frac{101}{425})^{\frac{1.45}{0.45}}×1360K=13.26K

Therefore;

W=4500×287(136013.26)1.451=64.41MWW=\frac{4500×287(1360-13.26)}{1.45-1}=64.41MW

Heat;

Q=W+ΔuQ=W+\Delta u

Δu=mcv(T2T1)\Delta u=mc_v(T_2-T_1)

cv=Rn1=2870.45=637.77kJ/kgKc_v=\frac{R}{n-1}=\frac{287}{0.45}=637.77kJ/kgK

Δu=4500×637.77(13.261360)=64.41\Delta u=4500×637.77(13.26-1360)=-64.41

Q=W+Δu=0Q=W+\Delta u=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS