Question #251430

An air bubble rises from the bottom of a well where the temperature is 25°C to the surface where the temperature is 27°C. Find the percent increase in the volume of the bubble if the depth of the well is 5 m. Atmospheric pressure is 101,528 Pascals.    


1
Expert's answer
2021-10-18T11:01:48-0400

T1=25+273=298  KT2=27+273=300  Kp2=patm=101528  Pa=101528  N/m2T_1 = 25 +273 = 298 \;K \\ T_2 = 27 + 273 = 300 \;K \\ p_2 = p_{atm}=101528 \;Pa = 101528 \;N/m^2

Pressure at bottom due to depth of fluid

p=ρghp=103×9.81×5=49050  N/m2p = ρgh \\ p = 10^3 \times 9.81 \times 5 = 49050 \;N/m^2

Total pressure at bottom

p1=patm+p=101528+49050=150578  N/m2p1V1T1=p2V2T2150578×V1298=101528×V2300V2=150578101528×300298×V1V2=1.4929V1=1.4929V1V1V1×100=49.295  %p_1 = p_{atm} + p \\ = 101528 +49050 \\ = 150578 \;N/m^2 \\ \frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2} \\ \frac{150578 \times V_1}{298} = \frac{101528 \times V_2}{300} \\ V_2 = \frac{150578}{101528} \times \frac{300}{298} \times V_1 \\ V_2 = 1.4929V_1 \\ % \; increase \; in \; volume = \frac{V_2-V_1}{V_1} \times 100 \\ = \frac{1.4929V_1-V_1}{V_1} \times 100 \\ = 49.295 \; \%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS