An air bubble rises from the bottom of a well where the temperature is 25°C to the surface where the temperature is 27°C. Find the percent increase in the volume of the bubble if the depth of the well is 5 m. Atmospheric pressure is 101,528 Pascals.
We have to consider the ideal gas law, thus the relation between both states will be given by
"\\cfrac{P_1V_1}{T_1} = \\cfrac{P_2V_2}{T_2} \\implies \\cfrac{V_2}{V_1} = \\cfrac{P_1 T_2}{P_2T_1}"
Now, we need to define the pressures and temperatures to calculate the rate between the new volume out of the well (V2) and the original volume of gas at the bottom (V1):
"P_1=P_{bottom}=\\rho_{_{\\text{H}_2\\text{O}}}gh\n\\\\ P_1= 1000\\frac{kg}{m^3}\\cdot 9.80\\frac{m}{s^2}\\cdot 5\\,m\\times \\frac{1\\,Pa}{1\\,kg\/(m^2 \\cdot s^2)} \n\\\\P_1=49000\\,Pa\n\\\\ T_1=T_{bottom}=25\\,\u00b0C=298.15\\,K\n\\\\ P_2=P_{surface}=P_{atm}\n\\\\ P_2=101528\\,Pa\n\\\\ T_2=T_{surface}=27\\,\u00b0C=300.15\\,K"
Now we substitute and we will find the change in volume:
"\\text{\\% of change} = 100\\cdot \\cfrac{V_2-V_1}{V_1} = 100\\cdot \\Bigg( \\cfrac{P_1 T_2}{P_2T_1} -1\\Bigg) \n\\\\ \\text{ }\n\\\\ \\text{\\% of change} = 100\\cdot \\Bigg( \\frac{(101528\\text{ Pa}) (300.15\\text{ K})}{(49000\\text{ Pa}) (298.15\\text{ K})} -1\\Bigg)\n\\\\ \\therefore \\text{\\% of change} = 100\\cdot (2.0589-1)=105.89\\text{ \\%}"
Reference
Comments
Leave a comment