A 150 mm steam pipe has inside dimater of 120 mm and outside diameter of 160 mm. It is insulated at the outside with asbestos. The steam temperature is 150°C and
the air temperature is 20°C. h (steam side) = 100 W/m2°C, h (air side) = 30 W/m2°C, k (asbestos)
= 0.8 W/m°C and k (steel) = 42 W/m°C. How thick should the asbestos be provided in order to
limit the heat losses to 2.1 kW/m2 ?
"r_1=\\frac{120}{2} = 60 \\;mm = 0.06 \\;m \\\\\n\nr_2 = \\frac{160}{2}=80 \\;mm = 0.08 \\;m \\\\\n\nk_A= 42 \\;W\/m\u00b0C \\\\\n\nk_B= 0.8 \\;W\/m\u00b0C \\\\\n\nt_{hf}=150 \\;\u00b0C \\\\\n\nt_{cf}= 20 \\; \\\\\n\nh_{hf}= 100 \\; W\/m^2\u00b0C \\\\\n\nh_{cf}= 30 \\;W\/m^C \\\\\n\nHeat \\;loss= 2.1 \\;kW\/m^2"
Thickness of insulation (asbestos), ("r_3 \u2013 r_2") :
Area for heat transfer "= 2 \\pi r L"
(where L = length of the pipe)
"Heat \\; loss = 2.1 \\times 2 \\pi r L \\;kW \\\\\n\n= 2.1 \\times 2 \\pi \\times 0.075 \\times L = 0.989 \\;L \\;kW \\\\\n\n= 0.989 \\;L \\times 10^3 \\;watts"
Where
"r= \\frac{150}{2}=75 \\;mm = 0.075 \\;m"
Heat transfer rate in such a case is given by
"Q= \\frac{2 \\pi L (t_{hf} -t_{cf}}{[\\frac{1}{h_{hf} \\times r_1} + \\frac{ln(r_2\/r_1)}{k_A} + \\frac{ln(r_3\/r_2)}{k_B} + \\frac{1}{h_{cf} \\times r_3} ]} \\\\\n\n0.989 \\;L \\times 10^3 = \\frac{2 \\pi L (150 -20)}{[\\frac{1}{100 \\times 0.06} + \\frac{ln(0.08\/0.06)}{42} + \\frac{ln(r_3\/0.08)}{0.8} + \\frac{1}{30 \\times r_3} ]} \\\\\n\n0.989 \\times 10^3 = \\frac{816.81}{[0.16666 + 0.00685 + \\frac{ln(r_3\/0.08)}{0.8} + \\frac{1}{30 \\times r_3} ]} \\\\\n\n\\frac{ln(r_3\/0.08)}{0.8} + \\frac{1}{30 \\times r_3} = \\frac{816.81}{0.989 \\times 10^3} -(0.16666+0.00685)=0.6524 \\\\\n\n1.25 ln(r_3\/0.08) + \\frac{1}{30r_3}- 0.6524 =0 \\\\\n\nr_3= 0.105 \\;m = 105 \\;mm \\\\\n\nThickness \\; of\\; insulation = r_3-r_2 = 105-80=25 \\;mm"
Comments
Very helpful
Leave a comment