Question #232136

A 150 mm steam pipe has inside dimater of 120 mm and outside diam￾eter of 160 mm. It is insulated at the outside with asbestos. The steam temperature is 150°C and

the air temperature is 20°C. h (steam side) = 100 W/m2°C, h (air side) = 30 W/m2°C, k (asbestos)

= 0.8 W/m°C and k (steel) = 42 W/m°C. How thick should the asbestos be provided in order to

limit the heat losses to 2.1 kW/m2 ?


1
Expert's answer
2021-09-03T14:04:59-0400

r1=1202=60  mm=0.06  mr2=1602=80  mm=0.08  mkA=42  W/m°CkB=0.8  W/m°Cthf=150  °Ctcf=20  hhf=100  W/m2°Chcf=30  W/mCHeat  loss=2.1  kW/m2r_1=\frac{120}{2} = 60 \;mm = 0.06 \;m \\ r_2 = \frac{160}{2}=80 \;mm = 0.08 \;m \\ k_A= 42 \;W/m°C \\ k_B= 0.8 \;W/m°C \\ t_{hf}=150 \;°C \\ t_{cf}= 20 \; \\ h_{hf}= 100 \; W/m^2°C \\ h_{cf}= 30 \;W/m^C \\ Heat \;loss= 2.1 \;kW/m^2

Thickness of insulation (asbestos), (r3r2r_3 – r_2) :

Area for heat transfer =2πrL= 2 \pi r L

(where L = length of the pipe)

Heat  loss=2.1×2πrL  kW=2.1×2π×0.075×L=0.989  L  kW=0.989  L×103  wattsHeat \; loss = 2.1 \times 2 \pi r L \;kW \\ = 2.1 \times 2 \pi \times 0.075 \times L = 0.989 \;L \;kW \\ = 0.989 \;L \times 10^3 \;watts

Where

r=1502=75  mm=0.075  mr= \frac{150}{2}=75 \;mm = 0.075 \;m

Heat transfer rate in such a case is given by

Q=2πL(thftcf[1hhf×r1+ln(r2/r1)kA+ln(r3/r2)kB+1hcf×r3]0.989  L×103=2πL(15020)[1100×0.06+ln(0.08/0.06)42+ln(r3/0.08)0.8+130×r3]0.989×103=816.81[0.16666+0.00685+ln(r3/0.08)0.8+130×r3]ln(r3/0.08)0.8+130×r3=816.810.989×103(0.16666+0.00685)=0.65241.25ln(r3/0.08)+130r30.6524=0r3=0.105  m=105  mmThickness  of  insulation=r3r2=10580=25  mmQ= \frac{2 \pi L (t_{hf} -t_{cf}}{[\frac{1}{h_{hf} \times r_1} + \frac{ln(r_2/r_1)}{k_A} + \frac{ln(r_3/r_2)}{k_B} + \frac{1}{h_{cf} \times r_3} ]} \\ 0.989 \;L \times 10^3 = \frac{2 \pi L (150 -20)}{[\frac{1}{100 \times 0.06} + \frac{ln(0.08/0.06)}{42} + \frac{ln(r_3/0.08)}{0.8} + \frac{1}{30 \times r_3} ]} \\ 0.989 \times 10^3 = \frac{816.81}{[0.16666 + 0.00685 + \frac{ln(r_3/0.08)}{0.8} + \frac{1}{30 \times r_3} ]} \\ \frac{ln(r_3/0.08)}{0.8} + \frac{1}{30 \times r_3} = \frac{816.81}{0.989 \times 10^3} -(0.16666+0.00685)=0.6524 \\ 1.25 ln(r_3/0.08) + \frac{1}{30r_3}- 0.6524 =0 \\ r_3= 0.105 \;m = 105 \;mm \\ Thickness \; of\; insulation = r_3-r_2 = 105-80=25 \;mm


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Ayoola
05.12.21, 13:51

Very helpful

LATEST TUTORIALS
APPROVED BY CLIENTS