When 0.5 kg of water per minute is passed through a tube of 20 mm
diameter, it is found to be heated from 20°C to 50°C. The heating is accomplished by condensing
steam on the surface of the tube and subsequently the surface temperature of the tube is maintained at 85°C. Determine the length of the tube required for developed flow.
Take the thermo-physical properties of water at 60°C as :
ρ = 983.2 kg/m2, cp = 4.178 kJ/kg K, k = 0.659 W/m°C, ν = 0.478 × 10–6 m2/s.
Mass flow rate "=density \\times area \\times velocity"
Here mass flow rate =0.5 kg/min= 0.0083 kg/sec
Area "=\\frac{\\pi}{4} \\times (0.02)^2=3.141 \\times 10^{-4} \\;m^2"
Density=983.2 kg/m³
"0.00833=983.2 \\times 3.141 \\times 10^{-4} \\times v"
Velocity (v) = 0.027 m/sec
Heat duty
"Q =(mcp) \\times ( 50-20) \\\\\n\n= 0.00833 \\times 4.178 \\times (50-20) \\\\\n\nQ= 1.0445 \\;kw"
Now Reynold number "=\\frac{ veocity \\times diameter}{kinematics \\;viscosity}"
"Re=\\frac{ 0.027 \\times 0.02}{0.478 \\times 10^{-6}}"
Re =1129.7<2100 ( laminor)
Prandtl number "= \u03bc \\times \\frac{cp}{k}"
"Pr = \\frac{983.2 \\times 0.478 \\times 10^{-6} \\times 4.178 \\times 10^3}{0.659} \\\\\n\nPr=2.98"
Now nusselt number for laminor
"Nu = 0.332 \\times Re^{0.5} \\times Pr^{0.33} \\\\\n\nNu=16.05 \\\\\n\nNu= \\frac{h \\times d}{k} =16.05"
Heat transfer coefficient
"h = 529 w\/m^2 \\cdot s \\\\\n\nNow \\; (\u2206T)lm =\\frac{ (50-85)-(20-85)}{ ln (\\frac{50-85}{20-85})} \\\\\n\n(\u2206T)lm= 48.46 \\; \u00b0C \\\\\n\nQ =h \\times A \\times (\u2206T)lm \\\\\n\nA=0.0407 \\; m^2= \\pi \\times d \\times L \\\\\n\nLength \\; (L) =0.648\\; m"
Answer: 0.648 m
Comments
Leave a comment