A small electric heating application
uses wire of 2 mm diameter with 0.8 mm thick insulation (k
= 0.12 W/m°C). The heat transfer coefficient (ho) on the insulated surface is 35 W/m2°C. Determine the critical thickness of insulation in this case and the percentage change in
the heat transfer rate if the critical thickness is used, assuming the temperature difference between the surface of the
wire and surrounding air remains unchanged.
Gives
"k=0.12W\/m\u00b0c"
"h_0=35W\/m^2\u00b0c"
"r_1=2mm\\\\r_2=1+0.8=2.8mm"
"\\dot{Q_1}=\\frac{\u2206t}{\\frac{1}{2\\pi kl}ln(\\frac{r_2}{r_1})+\\frac{1}{2\\pi r_2l h_0}}"
"\\dot{Q_1}=\\frac{2\\pi l\u2206t}{\\frac{1}{k}ln(\\frac{r_2}{r_1})+\\frac{1}{r_2h_0}}"
Put value
"\\dot{Q_1}=\\frac{2\\pi l\u2206t}{\\frac{1}{0.12}ln(\\frac{2.8}{2})+\\frac{1}{0.0028\\times35}}"
"\\dot{Q_1}=\\frac{2\\pi l\u2206t}{0.02803+10.2040}"
"\\dot{Q_1}=\\frac{2\\pi l\u2206t}{10.2321}"
"\\dot{Q_1}=2\\pi l\u2206t \\times0.09773"
Critical radius
"\\dot{Q_2}=\\frac{2\\pi l\u2206t}{\\frac{1}{k}ln(\\frac{r_c}{r_1})+\\frac{1}{r_ch_0}}"
Put value
"\\dot{Q_2}=\\frac{2\\pi l\u2206t}{\\frac{1}{0.12}ln(\\frac{3.4285}{2})+\\frac{1}{0.0034285\\times35}}"
"\\dot{Q_2}=\\frac{2\\pi l\u2206t}{4.491+8.333}"
"\\dot{Q_2}=\\frac{2\\pi l\u2206t}{12.8245}"
"\\dot{Q_2}={2\\pi l\u2206t}\\times0.07797"
Percentage increase and heat loss
Heat loss=20.21%
Comments
Leave a comment