Two sides of a parallelogram are 120 degrees with each other. The lengths of the sides
are 10.0 m and 6.5 m. Find the length of the diagonal opposite the included angle.
3. The base of the triangle is 5 m and the base angles are 65 and 40. Find the other side of
the triangle.
Solution.
α=120o;\alpha=120^o;α=120o;
a=10.0m;a=10.0m;a=10.0m;
b=6.5m;b=6.5m;b=6.5m;
c2=a2+b2−2abcosαc^2=a^2+b^2-2abcos\alphac2=a2+b2−2abcosα ;
c=100+42.25+2⋅10⋅6.5⋅0.5=14.4m;c=\sqrt{100+42.25+2\sdot10\sdot6.5\sdot0.5}=14.4m;c=100+42.25+2⋅10⋅6.5⋅0.5=14.4m;
3.a=5m;3. a=5m;3.a=5m;
β=65o;\beta=65^o;β=65o;
γ=40o;\gamma=40^o;γ=40o;
asinα=bsinβ ⟹ b=asinβsinα;\dfrac{a}{sin\alpha}=\dfrac{b}{sin\beta}\implies b=\dfrac{asin\beta}{sin\alpha};sinαa=sinβb⟹b=sinαasinβ;
b=5⋅0.90.97=4.6m;b=\dfrac{5\sdot0.9}{0.97}=4.6m;b=0.975⋅0.9=4.6m;
asinα=csinγ ⟹ c=asinγsinα;\dfrac{a}{sin\alpha}=\dfrac{c}{sin\gamma}\implies c=\dfrac{asin\gamma}{sin\alpha};sinαa=sinγc⟹c=sinαasinγ;
c=5⋅0.640.97=3.3m;c=\dfrac{5\sdot0.64}{0.97}=3.3m;c=0.975⋅0.64=3.3m;
Answer:c=14.4m;c=14.4m;c=14.4m;
3.b=4.6m;c=3.3m.3. b=4.6m; c=3.3m.3.b=4.6m;c=3.3m.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments