Evaluate
∫∫D(3−x−y)dA\int\int_D(3-x-y)dA∫∫D(3−x−y)dA
[dA means dxdy or dydx]
where D is the triangle in the (x, y) plane bounded by the x-axis and the lines y = x
and x = 1.
Solution.
∬D(3−x−y)dxdy=∫01(∫y=0y=x(3−x−y)dy)dx=∫01((3y−xy−y22)∣y=0y=x)dx=\iint_D(3-x-y)dxdy=\int^1_0(\int^{y=x}_{y=0}(3-x-y)dy)dx=\int^1_0((3y-xy-\dfrac{y^2}{2})\mid^{y=x}_{y=0})dx=∬D(3−x−y)dxdy=∫01(∫y=0y=x(3−x−y)dy)dx=∫01((3y−xy−2y2)∣y=0y=x)dx=
=∫01(3x−x2−x22)dx=(3x22−x33−x36)∣01=32−13−16=1.=\int^1_0(3x-x^2-\dfrac{x^2}{2})dx=(3\dfrac{x^2}{2}-\dfrac{x^3}{3}-\dfrac{x^3}{6})\mid^1_0=\dfrac{3}{2}-\dfrac{1}{3}-\dfrac{1}{6}=1.=∫01(3x−x2−2x2)dx=(32x2−3x3−6x3)∣01=23−31−61=1.
Answer: 1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments