In an air standard dual cycle, two-thirds of the total heat supply occurs at constant volume. The state at
the beginning of the compression process is 90kPa and 20
OC and the compression ratio is 9. If the total
heat supply is 2100kJ/kg, determine the maximum pressure and temperature and thermal efficiency of
the cycle.
Solution.
"p_1=90\\sdot10^{3}Pa;"
"T_1=293K;"
"\\dfrac{\\nu_1}{\\nu_2}=9;"
"Q=2100kJ=2.1\\sdot10^6J;"
"\\dfrac{T_2}{T_1}=(\\dfrac{\\nu_1}{\\nu_2})^{k-1};"
"T_2=T_1(\\dfrac{\\nu_1}{\\nu_2})^{k-1};"
"T_2=293\\sdot9^{1.4-1}=791K;"
"\\dfrac{p_2}{p_1}=(\\dfrac{\\nu_1}{\\nu_2})^{k};"
"p_2=p_1(\\dfrac{\\nu_1}{\\nu_2})^{k};"
"p_2=90\\sdot10^3\\sdot9^{1.4}=1950\\sdot10^{3}Pa;"
"Q_{in}=c_v(T_3-T_2)\\implies T_3=\\dfrac{Q}{c_V}+T_2;"
"T_3=\\dfrac{1.4\\sdot10^{6}}{718}+791=2740K;"
"p_3=p_2(\\dfrac{T_3}{T_2});"
"p_3=1950\\sdot10^{3}(\\dfrac{2740}{791})=6754\\sdot10^3Pa;"
"T_4=T_3(\\dfrac{\\nu_3}{\\nu_4})^{k-1};"
"T_4=2740\\sdot(\\dfrac{1}{9})^{0.4}=1141K;"
"Q_{out}=c_v(T_4-T_1);"
"q_{out}=718(1141-293)=608864J;""W=Q_{in}-Q_{out};"
"W=1.4\\sdot10^6-0.609\\sdot10^6=0.791\\sdot10^6J;"
"\\eta=\\dfrac{W}{Q_{in}}\\sdot100\\%;"
"\\eta=\\dfrac{0.791\\sdot10^6}{1.4\\sdot10^6}\\sdot 100\\%=56.5\\%;"
Answer: "p_3=6754\\sdot10^3Pa;T_3=2740K; \\eta=56.5\\%."
Comments
Leave a comment