5 kg of air initially at 8 bar and 380 K expands polytropically (pv1.2 =
constant) until the pressure is reduced to one-fifth value. Calculate: (i)
Final specific volume and temperature .
(ii) Change of internal energy, work done and heat interaction .
Take: R = 0.287 kJ/kg K and γ= 1.4.
Solution.
"m=5kg; p_1=8bar; T_1=380K; pv^{1.2}=const; p_2=\\dfrac{p_1}{5}=1.6bar;"
"R= 0.287 kJ\/kg K; \\gamma=1.4;"
"i)p_1v_1=RT_1\\implies v_1=\\dfrac{RT_1}{p_1};"
"v_1=\\dfrac{0.287\\sdot10^3\\sdot380}{8\\sdot10^5}=0.1363m^3\/kg;"
"v_2=v_1(\\dfrac{p_1}{p_2})^{\\dfrac{1}{n}};"
"v_2=0.1363\\sdot(\\dfrac{8}{1.6})^{\\dfrac{1}{1.2}}=0.5211m^3\/kg;"
"\\dfrac{T_2}{T_1}=(\\dfrac{p_2}{p_1})^{\\dfrac{n-1}{n}};"
"T_2=T_1(\\dfrac{p_2}{p_1})^{\\dfrac{n-1}{n}};"
"T_2=190.6K;"
"ii)u_2-u_1=c_v(T_2-T_1)=\\dfrac{R}{\\gamma-1}(T_2-T_1);"
"u_2-u_1=\\dfrac{287}{1.4-1}(190.6-380)=-64110J\/kg;"
"w_{1-2}=\\dfrac{R(T_1-T_2)}{n-1};"
"w_{1-2}=128290J\/kg;"
"Q_{1-2}=\\dfrac{\\gamma-n}{\\gamma-1}w;"
"Q_{1-2}=64150J\/kg;"
Answer:"i)v_2=0.5211m^3\/kg;T_2=190.6K;"
"ii)u_2-u_1=-64110J\/kg; w_{1-2}=128290J\/kg; Q_{1-2}=64150J\/kg."
Comments
Leave a comment