Question #206657

5 kg of air initially at 8 bar and 380 K expands polytropically (pv1.2 = 

constant) until the pressure is reduced to one-fifth value. Calculate: (i) 

Final specific volume and temperature .

(ii) Change of internal energy, work done and heat interaction .

Take: R = 0.287 kJ/kg K and γ= 1.4.


1
Expert's answer
2021-06-16T04:24:36-0400

Solution.

m=5kg;p1=8bar;T1=380K;pv1.2=const;p2=p15=1.6bar;m=5kg; p_1=8bar; T_1=380K; pv^{1.2}=const; p_2=\dfrac{p_1}{5}=1.6bar;

R=0.287kJ/kgK;γ=1.4;R= 0.287 kJ/kg K; \gamma=1.4;

i)p1v1=RT1    v1=RT1p1;i)p_1v_1=RT_1\implies v_1=\dfrac{RT_1}{p_1};

v1=0.2871033808105=0.1363m3/kg;v_1=\dfrac{0.287\sdot10^3\sdot380}{8\sdot10^5}=0.1363m^3/kg;

v2=v1(p1p2)1n;v_2=v_1(\dfrac{p_1}{p_2})^{\dfrac{1}{n}};

v2=0.1363(81.6)11.2=0.5211m3/kg;v_2=0.1363\sdot(\dfrac{8}{1.6})^{\dfrac{1}{1.2}}=0.5211m^3/kg;

T2T1=(p2p1)n1n;\dfrac{T_2}{T_1}=(\dfrac{p_2}{p_1})^{\dfrac{n-1}{n}};

T2=T1(p2p1)n1n;T_2=T_1(\dfrac{p_2}{p_1})^{\dfrac{n-1}{n}};

T2=190.6K;T_2=190.6K;

ii)u2u1=cv(T2T1)=Rγ1(T2T1);ii)u_2-u_1=c_v(T_2-T_1)=\dfrac{R}{\gamma-1}(T_2-T_1);

u2u1=2871.41(190.6380)=64110J/kg;u_2-u_1=\dfrac{287}{1.4-1}(190.6-380)=-64110J/kg;

w12=R(T1T2)n1;w_{1-2}=\dfrac{R(T_1-T_2)}{n-1};

w12=128290J/kg;w_{1-2}=128290J/kg;

Q12=γnγ1w;Q_{1-2}=\dfrac{\gamma-n}{\gamma-1}w;

Q12=64150J/kg;Q_{1-2}=64150J/kg;

Answer:i)v2=0.5211m3/kg;T2=190.6K;i)v_2=0.5211m^3/kg;T_2=190.6K;

ii)u2u1=64110J/kg;w12=128290J/kg;Q12=64150J/kg.ii)u_2-u_1=-64110J/kg; w_{1-2}=128290J/kg; Q_{1-2}=64150J/kg.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS