4 m3 of air at 2 bar, 27°C is compressed up to 6 bar pressure following
pv1.2 = constant. It is subsequently expanded adiabatically to 2 bar.
Considering the two processes to be reversible, determine the net work.
Solution.
"V_1=4m^3;"
"p_1=2bar;"
"T_1=300K;"
"p_2=6bar;"
"p_3=2bar;"
"pV^{1.2}=const;"
"p_1V_1=\\dfrac{m}{M}RT_1\\implies m=\\dfrac{Mp_1V_1}{RT_1};"
"m=\\dfrac{29\\sdot10^{-3}\\sdot2\\sdot10^5\\sdot4}{8.31\\sdot300}=9.3kg;"
"\\dfrac{T_2}{T_1}=(\\dfrac{p_2}{p_1})^{\\dfrac{n-1}{n}}\\implies T_2=T_1(\\dfrac{p_2}{p_1})^{\\dfrac{n-1}{n}};"
"T_2=300\\sdot(\\dfrac{6}{2})^{\\dfrac{1.2-1}{1.2}}=360K;"
"\\dfrac{T_2}{T_3}=(\\dfrac{p_2}{p_3})^{\\dfrac{\\gamma-1}{\\gamma}}\\implies T_3=T_2(\\dfrac{p_3}{p_2})^{\\dfrac{\\gamma-1}{\\gamma}};"
"T_3=300(\\dfrac{2}{6})^{\\dfrac{1.4-1}{1.4}}=262K;"
"W_{1-2}=\\dfrac{mR(T_1-T_2)}{M(n-1)}= \\dfrac{9.3\\sdot8.31\\sdot(300-360)}{0.029(1.2-1)}=-799479J;"
"W_{2-3}=\\dfrac{mR(T_2-T_3)}{M(\\gamma-1)}= \\dfrac{9.3\\sdot8.31\\sdot(360-262)}{0.029(1.4-1)}=652908J;"
"W=-799479J+652908J=-146570J=-146.57kJ;"
Answer: "W=-146.57kJ."
Comments
Leave a comment