Question #206655

4 m3 of air at 2 bar, 27°C is compressed up to 6 bar pressure following

pv1.2 = constant. It is subsequently expanded adiabatically to 2 bar. 

Considering the two processes to be reversible, determine the net work.


1
Expert's answer
2021-06-15T10:02:31-0400

Solution.

V1=4m3;V_1=4m^3;

p1=2bar;p_1=2bar;

T1=300K;T_1=300K;

p2=6bar;p_2=6bar;

p3=2bar;p_3=2bar;

pV1.2=const;pV^{1.2}=const;

p1V1=mMRT1    m=Mp1V1RT1;p_1V_1=\dfrac{m}{M}RT_1\implies m=\dfrac{Mp_1V_1}{RT_1};

m=29103210548.31300=9.3kg;m=\dfrac{29\sdot10^{-3}\sdot2\sdot10^5\sdot4}{8.31\sdot300}=9.3kg;

T2T1=(p2p1)n1n    T2=T1(p2p1)n1n;\dfrac{T_2}{T_1}=(\dfrac{p_2}{p_1})^{\dfrac{n-1}{n}}\implies T_2=T_1(\dfrac{p_2}{p_1})^{\dfrac{n-1}{n}};

T2=300(62)1.211.2=360K;T_2=300\sdot(\dfrac{6}{2})^{\dfrac{1.2-1}{1.2}}=360K;

T2T3=(p2p3)γ1γ    T3=T2(p3p2)γ1γ;\dfrac{T_2}{T_3}=(\dfrac{p_2}{p_3})^{\dfrac{\gamma-1}{\gamma}}\implies T_3=T_2(\dfrac{p_3}{p_2})^{\dfrac{\gamma-1}{\gamma}};

T3=300(26)1.411.4=262K;T_3=300(\dfrac{2}{6})^{\dfrac{1.4-1}{1.4}}=262K;

W12=mR(T1T2)M(n1)=9.38.31(300360)0.029(1.21)=799479J;W_{1-2}=\dfrac{mR(T_1-T_2)}{M(n-1)}= \dfrac{9.3\sdot8.31\sdot(300-360)}{0.029(1.2-1)}=-799479J;

W23=mR(T2T3)M(γ1)=9.38.31(360262)0.029(1.41)=652908J;W_{2-3}=\dfrac{mR(T_2-T_3)}{M(\gamma-1)}= \dfrac{9.3\sdot8.31\sdot(360-262)}{0.029(1.4-1)}=652908J;

W=799479J+652908J=146570J=146.57kJ;W=-799479J+652908J=-146570J=-146.57kJ;

Answer: W=146.57kJ.W=-146.57kJ.







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS