In an air standard Otto cycle with compression ratio of 10, air is compressed from 100kpa and 27
0C,
after which 1500kJ/kg of heat is added to it at constant volume. Compute (i) thermal efficiency of the
cycle, (ii) air temperature at the end of compression, heat addition and expansion processes and (iii) the
mean effective pressure of the cycle.
Solution.
"\\dfrac{\\nu_1}{\\nu_2}=10;"
"p_1=10^5Pa;"
"T_1=300K;"
"Q_{in}=1.5\\sdot10^6J;"
"\\dfrac{T_2}{T_1}=(\\dfrac{\\nu_1}{\\nu_2})^{k-1};"
"T_2=T_1(\\dfrac{\\nu_1}{\\nu_2})^{k-1};"
"T_2=300\\sdot10^{0.4}=754K;"
"Q_{in}=c_v(T_3-T_2)\\implies T_3=\\dfrac{Q}{c_V}+T_2;"
"T_3=\\dfrac{1.5\\sdot10^6}{718}+754=2843K;"
"T_4=T_3(\\dfrac{\\nu_3}{\\nu_4})^{k-1};"
"T_4=2843(\\dfrac{1}{10})^{0.4}=1132K;"
"Q_{out}=c_v(T_4-T_1);"
"Q_{out}=718(1132-300)=597376J;"
"W=Q_{in}-Q_{out};"
"W=1500000-597376=902624J=0.9\\sdot10^6J;"
"\\eta=\\dfrac{W}{Q_{in}}100\\%;"
"\\eta=\\dfrac{0.9\\sdot10^6}{1.5\\sdot10^6}100\\%=60\\%;"
"MEP=\\dfrac{W}{\\nu_1-\\nu_2};"
"\\nu_1=\\dfrac{RT_1}{P_1};"
"\\nu_1=\\dfrac{287\\sdot300}{10^5}=0.861m^3\/kg;"
"\\nu_2=\\dfrac{\\nu_1}{10};"
"\\nu_2=\\dfrac{0.861}{10}=0.0861m^3\/kg;"
"MEP=\\dfrac{0.9\\sdot10^6}{0.861-0.0861}=1.16\\sdot10^6Pa;"
Answer: "i)\\eta=60\\%;"
"ii)T_2=754K; T_3=2843K; T_4=1132K;"
"iii)MEP=1.16\\sdot10^6Pa."
Comments
Leave a comment