Question #178157

Calculate the partition function, free energy, entropy, CV and Cp of N linear 

harmonic oscillators


1
Expert's answer
2021-04-06T06:33:04-0400

We know that Maxwell distribution function

ni= gieαeβϵe^{-\alpha }e^{-\beta\epsilon}

ni=gi/e(α+βϵ)/e^{(\alpha+\beta\epsilon)}

Total no of partical

N=Σ\Sigma ni

N=Σ\Sigma gieαeβϵe^{-\alpha}e^{-\beta\epsilon}

N=AΣ\Sigmagieβϵe^{-\beta\epsilon}

NA=Σ\frac{N}{A}=\Sigma gieΣβϵe^{\Sigma-\beta\epsilon} Where gi degenracy

Z=Σeβϵ\Sigma e^{-\beta\epsilon}

Where n D harmonic oscillator energy

ϵ\epsilon =E=(n+1/2)(n+1/2)


Free energy

F= -KBTlnZTlnZ

F=-KBTlnk(B)Thw\ln\frac{k(B)T}{hw}

Entropy

S=KBddT(TlnZ)\frac{d}{dT}(T\ln Z)

Cp=Cv=ddT(E)\frac{d}{dT}(\overline E) =KB

E=KT2ddTlnZ\overline E =KT^2\frac{d}{dT}\ln Z



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS