Calculate the partition function, free energy, entropy, CV and Cp of N linear
harmonic oscillators
We know that Maxwell distribution function
ni= gi"e^{-\\alpha }e^{-\\beta\\epsilon}"
ni=gi"\/e^{(\\alpha+\\beta\\epsilon)}"
Total no of partical
N="\\Sigma" ni
N="\\Sigma" gi"e^{-\\alpha}e^{-\\beta\\epsilon}"
N=A"\\Sigma"gi"e^{-\\beta\\epsilon}"
"\\frac{N}{A}=\\Sigma" gi"e^{\\Sigma-\\beta\\epsilon}" Where gi degenracy
Z="\\Sigma e^{-\\beta\\epsilon}"
Where n D harmonic oscillator energy
"\\epsilon" =E="(n+1\/2)"
Free energy
F= -KB"TlnZ"
F=-KBT"\\ln\\frac{k(B)T}{hw}"
Entropy
S=KB"\\frac{d}{dT}(T\\ln Z)"
Cp=Cv="\\frac{d}{dT}(\\overline E)" =KB
"\\overline E =KT^2\\frac{d}{dT}\\ln Z"
Comments
Leave a comment