A thick-walle d insulatin g chambe r contain s n x
mole s o f
helium ga s a t a hig h pressur e Px
an d temperatur e T x
. I t is allowed
to lea k ou t slowl y t o th e atmospher e a t a pressur e P 0
throug h a
small valve. Show that the final temperature o f the n2
mole s of helium
left i n the chambe r i s
(Hint: Conside r a s you r syste m th e ga s tha t i s ultimatel y lef t i n
the chamber. )
For the adiabatic process,
"P_iV_i^\\gamma=P_fV_f^\\gamma"
So, we can write it as,
"(\\frac{P_1}{P_2})=(\\frac{V_f}{V_i})^\\gamma ...(i)"
From the ideal gas equation,
"PV=nRT"
"\\Rightarrow \\frac{P_iV_i}{T_1}=\\frac{P_fV_f}{T_f}"
"\\Rightarrow \\frac{T_f}{T_i}=\\frac{P_fV_f}{P_iV_i}"
Hence,
"T_f=T_i(\\frac{P_f}{P_i})^(\\frac{\\gamma-1}{\\gamma})"
Comments
Leave a comment