Question #176744

The expression for the number of molecules in a Maxwellian gas having speeds in

the range v to v + dv is


dNV=4(3.14)N((M/(2(3.14)kBT))3/2 Vexp[-(mv2/2kBT)]dV)


Using this relation, obtain an expression for average speed. Also, plot Maxwellian

distribution function versus speed at three different temperatures.


1
Expert's answer
2021-03-31T07:18:39-0400

f(v)dv=(m2πkT)324πv2emv22kTdv,f(v)dv=(\frac{m}{2\pi k T})^{\frac 32}4\pi v^2 e^{-\frac{mv^2}{2kT}}dv,

df(v)dv=8π(m2πkT)32vemv22kT(mv22kT1)=0,\frac{df(v)}{dv}=-8\pi(\frac{m}{2\pi k T})^{\frac 32}v e^{-\frac{mv^2}{2kT}}(\frac{mv^2}{2kT}-1)=0,

mv22kT1=0,\frac{mv^2}{2kT}-1=0,

v=2kTm=2RTM.v=\sqrt{\frac{2kT}{m}}=\sqrt{\frac{2RT}{M}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS